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Abstract— This paper proposes and experimentally validates
an on-board feature based positioning sensor and localization
system for mobile robots, rooted on Principal Component
Analysis (PCA), to operate in unstructured environments. The
positioning system resorts to principal component analysis of
images acquired by a video camera installed on-board, looking
upwards to the ceiling. No beacons or special features are
required to be present in the acquired images. The princi-
pal components of the acquired images are compared with
previously registered images present in a reduced on-board
image database. The position measured is fused with odometry
data. A Linear Parameter Varying (LPV) model for the Mobile
Robot Kinematics is defined, avoiding local linearizations and
the Extended Kalman Filter (EKF) stability limitations. The
estimates of position and angular slippage are provided by a
linear Kalman filter, with global stable error dynamics. The
experimental validation reported in this work focus on the
results of a set of exhaustive experiments carried out in a
real environment, where the robot travels in a 2D horizontal
plane. A small position error estimate was always observed, for
arbitrarily long experiments, with global stability, and angular
slippage was estimated accurately in real time.

I. INTRODUCTION

The problem of localization in unstructured environments,
without resorting to external sensors and with bounded
error estimates, has been a major challenge to the scientific
community in the area of mobile robotics; see [9], [4]
and the references therein. The inputs to the localization
system are the measurements provided by the sensor package
installed on-board, like compasses, accelerometers, cameras,
time of flight cameras, encoders, ..., and the robot has to
autonomously use these on-board sensors to be able to look
at the environment and rapidly answer the questions: where
am I? what am I facing?

SLAM (Simultaneous Localization And Mapping) is a
process by which a mobile robot can build a map of an
environment and at the same time to use this map to
estimate its localization. In SLAM, both the trajectory of the
platform and the localization of all landmarks are estimated
online without the need for any a priori knowledge of their
localization [9], [28]. However, substantial issues remain to
be solved in practice. One of the issues that remain open is
that the solutions rely on landmarks or on any other features
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that the robot may sense in the environment, which will
subsequently be used for robot localization. In practice, given
one environment, there is no guarantee that the same features
will be present in the environment on subsequent visits of
the robot to the same localization (loop closure problem). For
instance, fast corners [37] are a very efficient way to detect
features in an image but the number of corners actually found
depends on many tuning parameters. Different corners may
appear in different images taken from the same localization
at different times. Random Sample Consensus (RANSAC)
is considered the state of the art technique to keep track of
features while disregarding outliers but in practice all these
strategies rely on some structure of the environment [3], [23],
[10].

This paper follows an alternative approach resorting to
Principal Component Analysis (PCA) that actually does not
depends on any predefined structure of the environment.
There should always be something to distinguish data ac-
quired in one location to data acquired in another location
but no previous assumptions on the predefined structure of
the environment needs to be considered. The PCA data anal-
ysis corresponds to the computation of the data orthogonal
components that will make each dataset different. Hence, the
localization is defined based on the PCA of the large amount
of data taken from the unstructured environment.

A. Current Practices
The use of vision systems for robot localization is very

common [35], [34] due to the ability to obtain information
about the environment. Many vision systems compute the
robot pose (position and attitude) from features of the envi-
ronment, either from the entire image [14], extracting lines
[22], simply getting points of interest [16], [12], or extracting
scale-invariant features [24]. The computational complexity
of such algorithms to obtain features is not negligible, thus
the implementation in real-time systems still demands the
search for other approaches of reduced complexity.

Very successful implementations of visual odometry are
presented in [34], where a robot was able to localize itself
outdoors based on a minimum number of singular points that
have to be present in the environment. Although many robots
use cameras to look around itself to get its global pose in
the environment [36], [12], [21], others use a single camera
looking upward [16], [11], [39]. The use of vision from
the ceiling has the advantage that images can be considered
without scaling, i.e. a 2D image problem results and will be
pursued in this work.

Ceiling based navigation resorts to a common problem
of terrain based navigation. A commonly used synthesis
technique for the terrain based navigation design problem
has been Extended Kalman Filtering, see [15], [25], [33],



and the references therein. However, several authors reported
instability and divergence problems of the proposed navi-
gation systems, precluding their use in general. Correlation
techniques have also been suggested to solve the problem
at hand [5], [31], however with an high computational
load required. To overcome these problems particle filters
- discrete stochastic approximations to the optimal nonlinear
filter - have also been developed [18], with a performance
near the optimal, according with the Cramèr Rao lower
bound obtained, but very computationally demanding. New
mixed Kalman/particle filter methodologies have also been
proposed [8], with similar performance to the classical par-
ticle filters, but where a large number of particles still must
be used with the corresponding high computational burden.

B. PCA-based localization and optimal estimation
Since feature based techniques are computationally heavy,

some researchers have been working to find methods to make
this process more efficient. To achieve reduced complexity
algorithms, the use of PCA in mobile robots for self-
localization has been explored [21], [26], [2]. However,
all these approaches use front or omnidirectional cameras,
causing the algorithms to address problems of occlusion or
comparison with images in different planes. In [32], PCA
was used for terrain reference navigation of underwater
vehicles. The PCA-based localization system that we present
is this work corresponds to a experimental validation of the
one proposed in [32], using a Differential Drive Mobile
Robot [7] equipped with a video camera looking upwards
to the ceiling.

Beyond the problems of image processing for self-
localization, another challenge is to deal with the fusion
of the PCA-based position with the odometry data that is
given by the robot kinematics. Mobile robot kinematics
(e.g. Differential Drive) are, in general, non linear. This
fact prevents the direct use of a Kalman Filter, which is
a linear optimal estimator. To tackle this problem, many
localization systems use the Extended Kalman Filter (EKF)
with well characterized optimality and stability limitations.
Even though it can give a reasonable performance, the EKF
may diverge in consequence of wrong linearization or sensor
noise.

In this paper, we use a Linear Parameter Varying (LPV)
model for the Differential Drive Car, thus avoiding the non-
linear model issues mentioned above. Moreover, the filter
also estimates the slippage that is eventually present in
the reality. Many researchers tend to neglect slippage: our
approach addresses the problem explicitly. As slippage is
inevitable, we append a state to our model to express the
slippage explicitly. The filter estimates both angular slippage
and robot localization. Furthermore, the optimal estimate is
achieved, under the assumption that disturbance noise can be
modeled by Gaussian distributions, with global stable error
dynamics [32], [6].

C. Advantages and drawbacks
The proposed PCA-based position sensor and localization

estimation has the following advantages:
• The robot is able to self-locate in an indoor environ-

ment, only with on-board sensors (no external sensors
or landmarks are required);

• The algorithm is fast, thus it consumes very few com-
putational resources;

• The database of images stored on-board the mobile
robot is of reduced size, when compared with the total
number of images considered;

• The memory to allocate for the database storage is
flexible and related with the required positioning error
accuracy;

• No assumption is made about specific features in the
environment: thus this system can operate in an un-
structured environment where the only requirement is
that images must be different in each location;

• Under Gaussian assumption for the disturbances, the
localization system estimates in real time the position
and angular slippage with global stable error dynamics.

Some of the limitation for the proposed approach include:
• The robots should work in buildings with ceilings where

some information can be found (e.g. building-related
systems such as HVAC, electrical and security systems,
etc.);

• The ceilings should be static: the system cannot be
used outdoors as the sky is far from static and changes
randomly;

• The system is formulated in a digital discretized version
as well as the PCA approach pursued.

• A general limitation of all vision-based systems is their
sensitivity relative to lighting conditions. However, a
mix of image and distance (e.g. using time of flight or
structured light cameras) would increase the robustness
to lighting conditions.

This paper is organized as follows: in section II, the
principal component analysis technique is introduced in
detail. In section III, mobile robot kinematics models are
presented, including a linear model for the robot attitude and
a LPV model for the robot position. Section IV shows a set of
experimental results to validate and assess the performance
of the proposed PCA-based positioning sensor and the linear
Kalman filter based localization system. Future work is
presented in section V, where a multi agent architecture is
briefly outlined. Finaly, in section VI some conclusions are
drawn.

II. PRINCIPAL COMPONENT ANALYSIS
In this section the fundamentals of the positioning system

proposed in this work will be introduced. The proposed
methodology resorts to optimal signal processing techniques,
namely PCA, based on the Karhunen-Loève (KL) transform
to obtain a nonlinear positioning sensor. Considering all
linear transformations, PCA allows for the optimal approx-
imation to a stochastic signal in the least squares sense.
Furthermore, it is a well known signal expansion technique
with uncorrelated coefficients for dimensionality reduction.
These features make the KL transform interesting for many
signal processing applications such as data compression,
image and voice processing, data mining, exploratory data
analysis, pattern recognition and time series prediction. For
a thorough introduction to this topic and a number of state
of the art applications see [17].

Consider a set of M stochastic signals xi ∈ RN , i =
1, . . . ,M , each corresponding to the stacked version of an



image acquired with the video camera installed onboard the
mobile robot and represented as a column vector with mean
mx = 1

M

∑M
i=1 xi. The purpose of the KL transform is to

find an orthogonal basis to decompose a stochastic signal
x, from the same original space, to be computed as x =
Uv + mx, where vector v ∈ RN is the projection of x in
the basis, i.e. v = UT (x−mx). Matrix U = [u1 u2 . . . uN ]
should be composed by the N orthogonal column vectors of
the basis, verifying the eigenvalue problem

Rxxuj = λjuj , j = 1, ..., N, (1)

where Rxx is the covariance matrix, computed from the set
of M experiments using

Rxx =
1

M − 1

M∑
i=1

(xi −mx)(xi −mx)T . (2)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥
. . . ≥ λN , the choice of the first n � N principal
components leads to an approximation to the stochastic
signals given by the ratio on the covariances associated
with the components, i.e.

∑
n λn/

∑
N λN . In many appli-

cations, where stochastic multidimensional signals are the
key to overcome the problem at hand, this approximation
can constitute a large dimensional reduction and thus a
computational complexity reduction.

The advantages of PCA are threefold: i) it is an opti-
mal (in terms of mean squared error) linear scheme for
compressing a set of high dimensional vectors into a set
of lower dimensional vectors; ii) the model parameters can
be computed directly from the data (by diagonalizing the
ensemble covariance); and iii) given the model parameters,
projection into and from the bases are computationally
inexpensive operations, ∼ O(nN). These advantages suit
specially our problem, as the computation power, energy and
data storage on-board should be kept as reduced as possible
to augment the operation interval and reduce the cost of the
systems on-board.

Assume that scenario in the area of indoor mobile robotics
(e.g. industrial automation or robotic office applications),
where a navigation system to be installed on one or more
mobile robots must be developed and operated. In this
scenario it is considered that there is data available allowing
to develop a positioning system that recognizes the actual
position of the robot in real time. The steps to implement a
PCA-based positioning sensor using this visual data will be
outlined next.

Prior to the deployment of the robots, the visual data
of the area under consideration should be partitioned in
mosaics with fixed dimensions Nx by Ny . After reorganizing
this two-dimensional data in vector form, e.g. stacking the
columns, a set of M stochastic signals xi ∈ RN , N = NxNy
results. The number of signals M to be considered depends
on the mission scenario and on mosaic overlapping. The
KL transform can be computed, using equations (1) and
(2); the eigenvalues must be ordered and the number n of
the principal components to be used should be selected,
according with the required level of approximation.

The following data should be recorded for later use:
1) the data ensemble mean mx;

2) the matrix transformation with n eigenvectors

Un = [u1 . . . un]; (3)

3) the projection on the selected basis of all the mosaics,
computed using

vi = UT
n (xi −mx), i = 1, . . . ,M ; (4)

4) the coordinates of the center of the mosaics

(xi, yi), i = 1, . . . ,M. (5)

During the mission, at the time instants tk = Lk (where L
is a positive integer), the acquired images will constitute the
input signal x to the PCA positioning system. The following
tasks should be performed:

a) compute the projection of the signal x into the basis,
using

v = UT
n (x−mx); (6)

b) given an estimate of the current horizontal coordinates
of the robot position x̂ and ŷ, provided by the navigation
system, search on a given neighborhood δ the mosaic
that verifies

∀i‖[x̂ ŷ]T − [xi yi]
T ‖2 < δ, rPCA = min

i
‖v− vi‖2; (7)

c) given the mosaic i which is closest to the present
input, its center coordinates (xi, yi) will be selected as
the xm and ym measurements.

The relation f between rPCA and the positioning sensor
error covariance R (observation noise) to be used in the H2

estimation problem
R = f rPCA (8)

will be chosen according to the chosen environment. Note
that the image-based PCA positioning system described
above can be straightforwardly extended to incorporate data
from other sensors installed onboard mobile robots such as
magnetometers and range information from time-of-flight
cameras or structured-light 3D scanners (e.g. Microsoft
Kinect).

III. MODEL

This section will present the differential mobile robot
platform and the proposed linear model Differential Drive
Car implemented in the developed positioning system.

The experimental validation of the proposed positioning
system was performed resorting to a low cost mobile robotic
platform [7], with the configuration of a Differential Drive
Car. This platform has a PC laptop that controls the motors
through a closed loop motor controller connected by a USB
emulated serial port (see figures 1 and 2). The low replication
cost for these platforms will be instrumental during the
future tasks envisioned relying on cooperation and multi-
agent systems (see section V).

For the purpose of this work the platform was adapted to
include:
• a camera, pointing upwards to the ceiling;
• a compass, located in an extension arm to avoid the

motors’ magnetic interference (see figure 2).



Fig. 1. Mobile robot validation platforms

Fig. 2. Mobile platform equipped with camera and compass

The classical differential drive mobile robot model is given
by

ẋ = u cos θ (9)
ẏ = u sin θ (10)

θ̇ = ω (11)

where
u is the common mode speed,
x and y are the robot coordinates in the world referen-
tial,
θ is the orientation angle of the robot in the world
referential, and
ω is the angular speed.

A. Differential Drive Car Discrete Model
The continuous model defined by equations (9)–(11) is

nonlinear, which is a strong limitation for the use of a
Kalman filter. However, the model can be rewritten, in-
creasing the state space and choosing carefully new state
variables, so that the nonlinear system becomes a Linear
Parameter Varying (LPV) model for the Differential Drive
Car, as shown in this subsection. The implicit assumption
is that the localizator is processed in a discrete processor
where u and ω remain constant (zero order hold assump-
tion) between two consecutive processing times. This is a

reasonable approximation in a discrete controller, assuming
that the robot dynamics are fully absorbed by the controller.

Thus, differentiating the equations (9)–(11):

ẍ = −uω sin θ = −ωẏ (12)
ÿ = uω cos θ = ωẋ (13)

θ̈ = ω̇ (14)

and choosing as state vector for Differential Drive Car:

x =
[
x ẋ y ẏ

]T
(15)

the nonlinear model could be rewritten as the LPV model:

ẋ =

A(ω)︷ ︸︸ ︷ 0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

x + µ (16)

θ̇ = ω (17)

y =

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x + γ (18)

B. Discretization

Considering the LPV model of the Differential Drive
Car is processed in a digital processor, and assuming ω
to be constant between a sampling time (zero order hold
assumption), the solution (16)–(17) with state vector (15) is
given by:

x(t) = eA(ω)tx(0) +

∫ t

0

eA(ω)(t−τ)B dτ · µ(t) (19)

solving the equation (19) by parts:

eA(ω)t = exp


 0 1 0 0

0 0 0 −ω
0 0 0 1
0 ω 0 0

 t
 =

=


1 i e−iωt

2ω − i eiωt

2ω 0 − 1
ω + e−iωt

2ω + eiωt

2ω

0 e−iωt

2 − eiωt

2 0 − i e
−iωt

2 + i eiωt

2

0 1
ω −

e−iωt

2ω − eiωt

2ω 1 i e−iωt

2ω − i eiωt

2ω

0 i e−iωt

2 − i eiωt

2 0 e−iωt

2 − eiωt

2

 =

=


1 sinωt

ω 0 1
ω + cosωt

ω
0 cosωt 0 − sinωt
0 1

ω −
cosωt
ω 1 sinωt

ω
0 sinωt 0 cosωt

 (20)



and taking into account that B = I:∫ t

o

eA(ω)(t−τ)Bdτ =

=

∫ t

0

exp


 0 1 0 0

0 0 0 −ω
0 0 0 1
0 ω 0 0

 (t− τ)

 I dτ =

=

∫ t

0


1 sin(ω(t−τ))

ω 0 − 1
ω + cos(ω(t−τ))

ω
0 cos(ω(t− τ)) 0 − sin(ω(t− τ))

0 1
ω −

cos(ω(t−τ))
ω 1 sin(ω(t−τ))

ω
0 sin(ω(t− τ)) 0 cos(ω(t− τ))

 ·
· (t− τ) dτ =

=


τ cos(ω(t−τ))

ω2 0 −ωτ+sin(ω(t−τ))
ω2

0 − sin(ω(t−τ))
ω 0 − cos(ω(t−τ))

ω

0 ωτ+sin(ω(t−τ))
ω2 τ cos(ω(t−τ))

ω2

0 cos(ω(t−τ))
ω 0 − sin(ω(t−τ))

ω


∣∣∣∣∣∣∣∣∣
t

0

=

=


t 1−cosωt

ω2 0 −ωt−sinωtω2

0 sinωt
ω 0 − 1−cosωt

ω
0 ωt−sinωt

ω2 t 1−cosωt
ω2

0 1−cosωt
ω 0 sinωt

ω

 (21)

Replacing (20)–(21) in (19), the discrete model of Dif-
ferential Drive Car can be defined by the LPV in terms of
angular speed of robot ω:

x(k + 1) =

A(ω(k))︷ ︸︸ ︷
1 sinωT

ω 0 1
ω + cosωT

ω
0 cosωT 0 − sinωT
0 1

ω −
cosωT
ω 1 sinωT

ω
0 sinωT 0 cosωT

x(k)+

+


T 1−cosωT

ω2 0 −ωT−sinωTω2

0 sinωT
ω 0 − 1−cosωT

ω
0 ωT−sinωT

ω2 T 1−cosωT
ω2

0 1−cosωT
ω 0 sinωT

ω


︸ ︷︷ ︸

G(ω(k))

µ(k)

(22)

y(k) =

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x(k) + γ(k) (23)

Once that for ω(k) = 0 some expressions results in an
indetermination, in this case it is applied:

A(ω)(k) = lim
ω→0

A(ω(k)) =

 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (24)

G(ω)(k) = lim
ω→0

G(ω(k)) =


T T 2

2 0 0
0 T 0 0

0 0 T T 2

2
0 0 0 T

 (25)

C. Position Optimal Estimation
The position of the Differential Drive Car can be estimated

by a Kalman Filter based on the PCA sensor position
measurements [ xPCA(k) yPCA(k) ]T (see section II) and

the LPV model (A(ω(k))) presented in above subsection. To
implement this position estimator we assume that the error in
comum-mode actuation and in the PCA positon sensor is an
zero-mean uncorrelated Gaussian noise µ ∼ N(0, σ2

i ) and
γ ∼ N(0, σ2

i ), respectively. Applying the usual loop with a
Kalman gain to fuze the PCA position sensor with the LPV
model, the position estimator will be implemented using the
equation (26), that is represented by the block diagram of
figure 3:

x̂(k + 1) =A(ω(k))x̂(k)+

K(k)([ xPCA(k) yPCA(k) ]T −Cx̂(k)) (26)

K z−1 C

A(ωk)

x(k), y(k)

+

+ x̂(k + 1)

x̂(k)

x̂(k), ŷ(k)
+

ω(k)

Fig. 3. Block diagram of position estimator

Considering the implementation of an LPV model with
uncorrelated white noise, the position estimator is, under
the assumption of the Kalman filter proprieties, an optimal
estimator. So, the position estimated performing a zero-
mean error and global stabilization considering any wrong
initial conditions. This is an important consideration because
usually, to estimate the position of Differential Drive Car, is
common to apply EKF, which position error is not zero-mean
and can unstabilize.

Applying the usual approach of Kalman filter design,
the covariance of the prediction estimation error for the
LPV model presented in (22) and considering the process
covariance in comon-mode actuation Ql is given by:

P(k) = A(ω(k))P(k)A(ω(k))T + G(ω(k))QlG(ω(k))T

(27)

To obtain the covariance of the predition estimation error,
the Kalman filter starts its estimation considering that the
environment is uniform, i.e. the initial error covariance P(0)
is equal in x and y directions. The error covariance in the
linear actuation Ql, was obtained performing tests based
on linear trajectories, and is also equal in both directions.
Following the classical Kalman filter approach, the error
covariance was updated with the uncertainty of the the
position measuremed:

P(k) = P(k)−P(k)CT (CP(k)CT + R(k))−1CP(k)
(28)

where R(k) is the the observation uncertainty for the instant
k based in the uncertainty of the PCA position sensor and
Rxy the observation noise described in equation (8):

R(k) = Rxy · f rPCA(k) (29)

The error covariance of the PCA positioning sensor (Rxy)
has been calculated with the position error in a predefined
trajectory and is not equal in x and y directions because,
in reality, the environment is not identical in both direction



resulting in different uncertainty measurement of the sensor
in each direction.

Considering the unertainty of the estimator P(k) and in
the PCA position sensor P(k) the Kalman gain that is apply
in the global position estimator for instant k is obtained:

K(k) = P(k)CTR(k)−1 (30)

The Kalman gain K is a dynamic gain proportional to the
estimation uncertainty and inversely proportional of measure-
ment uncertainty in the PCA position sensor. Considering
that this gain is applied to a LPV model with a white noise
in the actuation and in the position sensor, the results of the
position estimated is always convergent and stable for any
initial conditions in the state vector.

D. Attitude Optimal Estimation

In addition with the position estimation, the self-
localization system is completed with the estimation of
the attitude of the robot. As metioned above, due the
uncertainties of measures (radious of wheels, unknowdge
of contact points), the angular slippage is invitable in a
Differential Drive Car. Thus, the proposed attitude estimator
will projected to estimate both, the attitude of the robot (and
consequently its angular speed) and the angular slippage
caused by the mentioned uncertainties.

The kinematic model that describes the attitude, tacking
into account the angular slippage is:

ψ̇ = ω + s+ µ1 (31)
ṡ = 0 + µ2 (32)

where the the following assumptions were considered:

• the angular slippage is constant or slowly varying (i.e.
ṡ = 0);

• the noise in the actuation (motors are in closed loop)
and the slippage velocity are assumed as zero-mean
uncorrelated white Gaussian noise, µi ∼ N(0, σ2

i ).

Expressing the equation (32) in a state-space with θ =[
ψ s

]T
, the model dynamics is defined by

θ̇ =

[
0 1
0 0

]
θ +

[
1
0

]
ω +

[
1 0
0 1

] [
µ1

µ2

]
(33)

y(k) = [1 0]θ(k) + γ(k) (34)

Since the attitude estimator is processed in a digital
processor, the discrete model is obtained assuming that the
angular speed ω is constant (zero order hold assumption)
between two consecutive processing times, the solution of
this model is given by:

θ(t) = eAtθ(0) +

∫ t

0

eA(t−τ) dτ (35)

Taking into account that

eAt = exp

([
0 1
0 0

]
t

)
=

[
1 t
0 1

]
(36)

and ∫ t

0

eA(t−τ)B dτ ω =

=

∫ t

0

exp

([
0 1
0 0

]
(t− τ)

)[
1
0

]
dτ ω =

=

∫ t

0

[
1 t− τ
0 1

] [
1
0

]
dτ ω =

=

[
τ
0

]∣∣∣∣T
0

ω =

[
T
0

]
ω (37)

the discrete model of attitude for a sampling time T is
obtained replacing (36)–(37) in (35):

θ(k + 1) =

A︷ ︸︸ ︷[
1 T
0 1

]
θ(k) +

B︷ ︸︸ ︷[
T
0

]
ω(k) (38)

y(k) =
[

1 0
]︸ ︷︷ ︸

C

θ(k) (39)

Applying a Kalman filter for this discrete model, the
estimator vector is given by:

θ̂(k + 1) = Aθ̂(k) + Bω(k) + K[y(k)−Cθ̂(k)] (40)

Uncoupling the matrix equation (40), and considering that
the output state (y(k)) is ψ(k), we obtain:

ψ̂(k + 1) = ψ̂(k) + T ŝ(k) + Tω0(k) +K1(ψ(k)− ψ̂(k))
(41)

ŝ(k + 1) = ŝ(k) +K2(ψ(k)− ψ̂(k)) (42)

where:
• ψ̂ is the estimated attitude of the robot
• ŝ is the estimated angular slippage (caused by the uncer-

tainty in the robot model, e.g. non-nominal dimensions
of wheels).

• ω0(k) is the angular speed of the robot:
The angular speed of the Differential Drive Car of a

sampling time T is given by:

ω0(k) =
(αr(k)− αr(k − 1))− (αl(k)− αl(k − 1))

T · l
(43)

where:
• l is the distance between wheels
• αr is the angle of the right wheel
• αl the angle of the left wheel.
• ωo(k) is the angular speed given by the odometry of

the robot
This model, based in the numerical difference of odometric

readings, is represented by the block diagram of figure 4.
To avoid obtaining the attitude of robot through a numeri-

cal difference (that amplifies the noise of the angular sensor),
and since it is possible to obtain the angles of the wheels (αr
and αl) directely from the hardware the differential attitude
can be calculated by:

ψo(k) = (αr − αl)
r

l
(44)

where
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Fig. 4. Block diagram of attitude estimator with numerical difference

• r is the radius of the wheels
• l the distance between wheels.
• ψo(k) is the attitude given by the odometry of the robot
The block diagram of Figure 4 should be redesigned to

the equivalent system in Figure 5, and the model of attitude
estimator (41)–(42) can be rewritten as

ψ̂(k) = β(k) + ψo(k) (45)

β(k + 1) = β(k) + T ŝ(k) +K1(ψ(k)− ψ̂(k)) (46)

ŝ(k + 1) = ŝ(k) +K2(ψ(k)− ψ̂(k)) (47)
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Fig. 5. Block diagram of attitude estimator without numerical difference

The angular speed of the robot that will be used in
LPV (23) is obtained through a numerical difference of the
estimated attitude of the robot:

ω̂(k) =
ψ̂(k)− ψ̂(k − 1)

T
(48)

This solution, although calculated with a numerical differ-
ence, is filtered by the attitude estimator, causing less noise
than the direct numerical difference from the encoders.

E. Observability of the Global Self-localization Models
To verify that the proposed models could be implemented

in a localization system and to know the possible information
that can be obtained through it, an observability study to
models must be also realized.

Thus, to verify if the model of attitude and the angular
slippage is observable, the matrix of (38)–(39) was consid-
ered to obtain the observability matrix:

Oa =

[
C
CA

]
=

[
1 0
0 1

]
(49)

which results in a rank(Oa) = 2. Considering that rank(Oa)
is equal to the dimention of the state vector, it is possible to
conclude that the two states are observable and is possible
to implement this model estimate attitude of the robot and
the angular slippage.

Repeating the same process to study the observability
of the LPV model presented in equations (22)–(23), the
observability matrix is given by:

Op =


C

CA(ω(k))

CA(ω(k))
2

CA(ω(k))
3

 =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 0 −ω
0 ω 0 0
0 −ω2 0 0
0 0 0 −ω2


(50)

which verifies rank(Op) = 4, allowing to concluded that the
model is observable and that it is possible be implemented
to estimate the position of the robot.

Finally, in addition to position observability study pre-
sented above, and in order to verify the possibility of
common mode slippage estimation, the model of differential
drive (9)–(11) will be rewritten as

ẋ = (u+ e) cos θ (51)
ẋ = (u+ e) sin θ (52)

θ̇ = ω (53)
ė = 0 (54)

where e is the common mode slippage, constant between two
sampling times (zero order hold assumption). Differentiating
(51)–(54)

ẍ = u̇ cos θ − uω sin θ + ė cos θ − eω sin θ

= −(u+ e) sin θ = −ωẏ (55)
ẋ = u̇ sin θ − uω cos θ + ė sin θ − eω cos θ

= (u+ e) cos θ = ωẋ (56)

θ̈ = ω̇ (57)

Choosing as state vector

x =
[
x ẋ y ẏ e

]T
(58)

the model becomes:

ẋ =

A(ω(k))︷ ︸︸ ︷
0 1 0 0 0
0 0 0 −ω 0
0 0 0 1 0
0 ω 0 0 0
0 0 0 0 0

x (59)

y =

[
1 0 0 0 0
0 0 1 0 0

]
︸ ︷︷ ︸

C

x (60)

From the dynamic and observable matrixes the observability



matrix may be obtained:

Op =


C

CA(ω(k))

CA(ω(k))
2

CA(ω(k))
3

CA(ω(k))
4

 =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 −ω 0
0 ω 0 0 0
0 −ω2 0 0 0
0 0 0 −ω2 0
0 0 0 ω3 0
0 −ω3 0 0 0


(61)

which verifies rank(Op) = 4. Once that the value of the
rank(Op) is less than the dimension of the state vector, it is
only possible to conclude that the system is not observable;
in other words, the propose model allow the estimation of the
angular slippage but does not the estimation of the common
mode slippage of the robot.

IV. EXPERIMENTAL RESULTS
A. Environment

The mobile robot self-localization methodology proposed
in this paper has been tested for the aforementioned mobile
robot. To create the PCA eigenspace (the image database
referred in the previous sections), the environment has been
mapped with images captured in the same direction and
referenced in a grid (see figure 6).

Fig. 6. Grid map and image processing to create a PCA eigenspace.

The covered area was a 5 m × 4.5 m surface rectangle,
with a distance of 0.3 m (in x and y axis) between captured
images. The gray scale images were cropped with a circular
mark (see image processing in figure 1) to allow the rotation
of captured images. The pixels representing the images inside
the circle have been converted into a vector. In order to
compress the amount of processing data with negligible
information loss, the mentioned vectors have been sampled
considering a compression ratio of 1/10 and, thus, creating
the PCA eigenspace (figure 6). Therefore, analyzing the
corresponding PCA eigenvalues and selecting components
that explain the images variability in an excess of 85%,
results on an eigenspace (image database) of 22 eigenvectors.
Considering the covariance’s Q = Q(k) and R = R(k) used
in the Kalman filter design, which are respectively the error
covariance in the actuation system and in the sensors, some

measurement tests were performed with a sampled frequency
of 5 Hz. The error covariance in the differential actuation is
represented by Qω , while the variable Ql stands for the error
covariance in the common-mode actuation. For the measure-
ment uncertainty, Rψ stands for the error covariance in the
attitude sensor, while Rxy stands for the error covariance
in the position sensor. Thus, to parameterize the attitude
estimator, the value Qw = 2.44 × 10−5 (rad · s−1)2 was
obtained measuring the error covariance in the differential
actuation along predefined circulars trajectories with different
radius and Rψ = 9.4 × 10−3 rad2 being the covariance
error of digital compass, has been measured using the same
type of trajectories. For the position estimator, the error
covariance in the linear actuation Ql = 4.1× 10−6 m2, was
obtained performing tests based on linear trajectories, while
the error covariance of the PCA positioning sensor, has been
calculated with the position error in a predefined trajectory
being Rxy = diag(

[
1.6310−2 8.34× 10−1

]
) m2.

B. Architecture

The proposed sensor consists of two Kalman filters and
one PCA positioning sensor (figure 7)), where, only with on-
board sensors (camera, compass and encoders), is possible
to estimate the robot attitude and position, as well as the
angular motion speed and the robot angular slippage.

Attitude
and

angular slippage

estimator
(KF)

Circular crop

and
image rotation

PCA
Position
estimator

(KF)

Self-localisation sensor

θlw encoder

θrw encoder

ψcompass

image

ω̂slippage

ψ̂robot

ω̂robot

(x, y)PCA

(x̂, ŷ)robot

Fig. 7. Architecture of the self-localization sensor.

The following notation is used in figure 7:
• ψcompass is the orientation angle given by the compass
• θrwencoder is the angle given by the encoder of the right

wheel
• θlwencoder is the angle given by the encoder of the left

wheel
• (x, y)PCA is the coordinates given by the PCA sensor
• (x̂, ŷ)robot is the estimated robot coordinates in the

world referential
• ω̂robot is the estimated angular speed
• ω̂slippage is the estimated differential slippage.
Detailing the architecture of the self-localization sensor,

the Kalman filter depicted on the left of figure 7 imple-
ments the attitude optimal estimator model described above
(Section III) and is responsible to estimate the mobile robot
attitude and the differential slippage.

In order to apply the PCA algorithm described in Section
II, the captured images should be rotated for zero degrees
of attitude. The reason for such an operation is to achieve
the images in the same orientation of the images stored in
the PCA eigenspace. The image rotation has been performed



using the data acquired from the digital compass. However,
before the image rotation has been performed, the image
should have the same pre-processing treatment given to the
images stored in the PCA eigenspace. In other words, the
captured images should be converted from RGB (Red-Green-
Blue color mode) to greyscale and cropped with a circular
shape (see figure 6). The PCA block determines which image
in the eigenspace has the better fits (eigenvector nearer to
the captured image) with the acquired image and returns
the coordinates of its centre (see Section II). Applying the
proposed LPV model (see Section III) as a function of
the estimated angular speed together with the coordinates
given by the PCA position sensor, the self-localization sensor
estimates the robot global position.

C. Estimation on a Lawn-Mower trajectory

To test the mobile robot self-localization optimal estimator
the proposed system was tested with the classical Lawn-
Mower type trajectories. These trajectories have the advan-
tage of combining both straight lines with curves allowing
testing the localization system robustness under different
conditions. Figure 8 depicts the results for a Lawn-Mower
trajectory under the following conditions:
• Start robot position: x = 3.6 m; y = 2.4 m; ψ = 90 ◦

• Robot speed: 0.1 m · s−1
• Sample frequency: 5 Hz
• Lawn-Mower trajectory with 4 turns
• Initial Kalman Filter estimation is the same as the initial

robot position
To analyse the real error of the optimal estimator while robot
was moving along the trajectory, same points were marked
on the ground along the path followed by the robot.
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Fig. 8. Results for a Lawn-Mower trajectory (map 2D).

Analysing the results of the ground truth test (figure 8) it
is possible to conclude that the estimator gives a very good
approximation of the real trajectory. Making a trajectory
zoom, in the end of the final straight line trajectory, it can
be observed that the estimator uncertainty corresponding to
the marks performed in the floor is lower than the position
obtained through the robot’s odometry. Sometimes, when the
robot turns, the error associated with the value given by the
compass origins a perturbation in the image rotation before

it being used in the PCA algorithm. Hence, due to such
an effect the PCA algorithm estimates a position with one
grid position of error (0.3 m) as can be observed in figure
9. However, although these variations in the PCA position
sensor could be observed, the estimator is able to recover
(see figures 8 and 9).
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Fig. 9. Results for a Lawn-Mower trajectory (estimated position in time).

It is also worth measuring the statistical distribution of
the errors in the position estimation, because according to
the assumptions mentioned above, the distribution of the
errors should be approximated by a zero mean Gaussian
distribution. Figure 10 shows the histogram of the position
errors for the coordinates x and y. The approximation to
a zero mean Gaussian distribution is not exact, nevertheless
the non-zero mean is explained by the fact that the trajectory
is not random and due to some perturbations given by
the PCA position sensor (that has a resolution of 0.3 m).
Those perturbations are more visible in y estimated position
where the PCA sensor has more perturbations when the
robot curves (see figure 9). However, considering that the
PCA position sensor resolution is 0.3 m, the non-zero mean,
x̄ = −2.5 × 10−3 m and ȳ = −1.64 × 10−2 m, are very
close to zero.
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Figures 11 to 14 depict, respectively, the stabilization of
the Kalman gains and the estimators’ covariance in function
of time. It can be observed that all estimators are convergent
and fast to stabilize the uncertainties. This quickness to
stabilize the position or the attitude is more visible in x
position because, due to the characteristics of the PCA
position sensor, the corresponding covariance is smallest than
the covariance in y position.
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Fig. 11. Kalman gain evolution for position estimators.
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Fig. 12. Kalman gain evolution for attitude estimators.

As can be observed in the presented results the localization
system is always stable performing a good estimation of
the localization in spite of the low precision sensor used to
measure the position looking up to the ceiling. An odometry
base localization system would necessary diverge over time.
A suitable data sensor fusion in the Kalman filters allows
achieving an accurate sensor with a performance much
higher than the performance of each individual sensor. In
the previous tests can be observed that during the curves
the system loses some precision, which is explained by the
inevitable errors presented in the information provided by
the compass and the consequent disturbance in the image
rotation that will be compared with the images in the PCA
eigenspace.
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Fig. 13. Covariance evolution for position estimators.
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Fig. 14. Covariance evolution for attitude estimators.

D. Global Stability of Position Estimator
It is also worth to check the global stability of the

localization estimator when it was wrongly initialized on
purpose. Thus, to check the stability of the system, some re-
localizations were performed considering that the estimated
position starts from the different initial positions that are
presented in table I.

TABLE I
INITIAL CONDITIONS OF POSITION STABILITY VALIDATION IN A

LAWN-MOWER TRAJECTORY

x position [m] y position [m]
Robot position 3.6 2.4
Re-localization 1 4.1 2.4
Re-localization 2 4.1 1.9
Re-localization 3 2.1 1.6

The results (figures 15 and 16) show that in spite of the
initial large error of the estimated position, the system con-
verges to the correct localization for any different conditions.
Analyzing figure 16 it is possible to observe the quickness of
the position estimator to stabilize (approximately 5 seconds),
what considering the speed of mobile robot of 0.1 m · s−1



represents 0.5 m of the travelled distance.
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Fig. 15. Results of position stability tests for a Lawn-Mower trajectory
(map 2D).

E. Global Stability of Attitude Estimator

Another important stability question is to assure that the
estimator is able to correct the trajectory when the mobile
robot starts with a different attitude. This challenge is greater
than the position estimation because the robot odometry
makes the estimator to describe a different trajectory, what
could originate increasing position errors along time.

TABLE II
INITIAL CONDITIONS OF ATTITUDE STABILITY VALIDATION IN A

LAWN-MOWER TRAJECTORY

attitude [ ◦ ]
Robot position 90
Re-localization 1 10
Re-localization 2 180
Re-localization 3 270

Thus, considering the initial conditions of table II, the
results presented in figure 17 show that the attitude Kalman
filter is also fast to estimate the real robot attitude, spending
less than 0.5 s to correct it. Once the proposed model for
differential mobile robots is a LPV model in function of the
angular speed (based in estimated attitude), the quickness to
correct the initial wrong attitude allows an estimated position
correction in about 6 s.

Moreover, figure 18 shows that only with odometry the
mobile robot will be completely lost after starts from a wrong
initial direction. However, how it is possible to observe,
namely making a zoom at the initial path, the attitude
estimator is able to stabilize any wrong initial direction, even
considering the worst scenario (in opposite direction).

F. Global Stability with Wrong Initial Position and Attitude

Finally, a more robustness stability validation test was
performed combining the two tests described above. Thus,
as initial conditions for the mentioned two tests, the three
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Fig. 16. Results of position stability tests for a Lawn-Mower trajectory
(first 10s).

different initial conditions used in the previous tests for
the Lawn-Mower trajectory have still been considered but,
instead, to respect the correct attitude of the robot, it was
applied a very bad initial condition for the attitude estimator
(see table III).

TABLE III
INITIAL CONDITIONS OF POSITION AND ATTITUDE STABILITY

VALIDATION IN A LAWN-MOWER TRAJECTORY

x position [m] y position [m] attitude [ ◦ ]
Robot position 3.6 2.4 90
Re-localization 1 4.1 2.4 0
Re-localization 2 4.1 1.9 315
Re-localization 3 2.1 1.6 225

The results depicted in figure 19 shows that considering
the wrong initial conditions, the robot would describe, in
an open-loop, the same Lawn-Mower trajectory, but in a
different direction. Considering these conditions, the position
estimator could diverge from the robot real position, but
instead of that, the results are always stable and very fast
in their convergence.

G. Angular Slippage Estimation
Another important aspect to be considered in self-

estimation position is the existence of an angular slippage
caused by systematic errors, due to the uncertainty in the
dimensions of the robot, which greatly increases the error of
odometry self-localization. As was presented in the observ-
ability study, the model used to estimate the robot attitude
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Fig. 17. Results of attitude stability tests for a Lawn-Mower trajectory
(first 10s).

is able to estimate this aforementioned angular slippage.
To validate the origin and the angular slippage estimation,
considering the differential mobile robot presented above,
new experimental tests have been conducted making the
robot following a similar Lawn-Mower trajectory with a
imposed angular slippage of 1 deg·s−1. The results presented
in figure 20 shows that the position estimation is not possible
with the odometry, once the angular slippage imposed will
change the robot real trajectory. However, the proposed self-
localization method is able to cope with angular slippages
estimating its value in approximately 40 s (see figure 21).

V. FUTURE WORK

This paper represents the initial step towards an agent
based architecture where a large set of mobile robots will be
able to cooperate to perform navigation and formation tasks,
featuring obstacle avoidance, human interaction and search
and rescue activities. The multi-agent system (MAS) to be
developed in the near future is described in the remaining of
this section.

Clearly, from all the above, it is desired that the mobile
robots constitute a MAS, where each of the robots is an
intelligent agent [38]. It is desired that each robot to be
autonomous, reactive to perceived changes in the environ-
ment, pro-active (so as to take initiatives to fulfill its assigned
goals), and able to interact with other robots. These are the
characteristics that define an intelligent agent. It is also clear
that
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Fig. 18. Results of attitude stability tests for a Lawn-Mower trajectory
(map 2D).

• the behavior of the agents is to result both from
stimulus–response relations and from a map of the
environment from which future actions are decided; i.e.
agents are hybrid, inbetween purely reactive and purely
cognitive ones;

• agents move in an open environment, i.e. one which
is continuous, dynamic, non-deterministic (inasmuch
its changes do not solely depend on actions from the
agents) and partially inaccessible (as no perfect map is
ever got).

Actually multi-robot systems are a classical application of
MAS, be it for determining trajectories for different robots
avoiding collisions [20], [29], for integrating maps estab-
lished by different robots taking into account odometry
uncertainties [19], or for achieving cooperation of different
robots to carry a weight through a door [1], among many
other possible examples.

Since several different tasks are to performed by each
agent simultaneously, each of the agents corresponding to
one mobile robot may be further decomposed in agents for
each task, as done e.g. in [30] for map-building from visual
data, in [13] for manipulator robots, or in [27] for fault
detection and isolation (FDI); or else a conventional parallel
computing programming technique may be used (which can
often be a better option [38]).

While in this paper, as explained above in section III, only
one robot was considered, the architecture schematized in
figure 22 can even now be proposed: the tasks within each
robot are organized using a hierarchical architecture; commu-
nications between agents are also organized hierarchically,
with a centralized node responsible for assigning trajectories
and keeping an up-to-date map of all regions explored so
far; if communications with that center fail, a decentralized
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Fig. 19. Results of stability tests considering a wrong initial position and
attitude (map 2D).

architecture is used instead for updating the maps, while
agents keep their last assigned missions. Actually it might be
possible to use always a decentralized architecture, at least
for exchanging information on maps; but this option requires
far more information exchanges between agents, and thus is
less desirable than a hierarchical architecture.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8
1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

X [m]

Y
 [

m
]

 

 

start

finish

Odometry (X
0
 correct)

Estimated
Real measured points

Fig. 20. Results of position estimation with imposed angular slippage (map
2D).

VI. CONCLUSIONS

A new positioning sensor and a localization system for
mobile robots to operate with only onboard sensors in
unstructured environments is proposed and experimentally
validated. The positioning sensor resorts to PCA, from the
images acquired by a camera installed onboard, looking
upwards to the ceiling. For the estimation using Kalman
filters, a new linear Differential Drive car kinematic model
for digital processing was proposed. This model estimates
positions and slippages for differential motion guarantee-
ing a global stability due the properties of the Kalman
filter. Several experimental tests was performed using Lawn-
Mower trajectory: i) self-localization tests with ground truth
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Fig. 21. Results of angular slippage estimation.

validation and Monte Carlo performance study ii) global
stability validation for position and attitude estimation and
iii) real-time angular slippage estimation. Results shows that
the position sensor is very fast to stabilize and guarantees a
global stability, even when the estimator starts from wrong
positions and attitudes. The proposed method is efficient to
be successfully implemented in mobile robots to operate in
unstructured environments.

Considering, that the robot used in the experimental val-
idations has a low cost hardware (motors with encoders,
webcam, digital compass and a netbook), it is also possible
that the proposed model and estimator could be applied
in all tasks of Differential Drive car mobile robot that
address self-localization as trajectory control and mapping
and formations or collaborative work of multi-robots. This
paper represents the initial step towards a multi-agent system
based architecture where a large set of mobile robots will be
able to cooperate to perform navigation and formation tasks,
featuring obstacle avoidance, human interaction and search
and rescue activities.
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