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Welcome message from the Chairs of the Conference Committee 

Welcome to the 11th International Conference on Mobile Robots and Competitions, the scientific 
meeting of Robotica2011, the 11th edition of the Portuguese Robotics Open (Festival Nacional de 
Robótica). This year we celebrate the 10th anniversary of the Festival, the annual event of the 
Portuguese Robotics Society (Sociedade Portuguesa de Robótica ‐ SPR). Once again, 600 Portuguese 
(and some foreign friends as well) students and teachers from all education levels meet together to 
share their latest advances in robot competitions and S&T research. 
 
Twenty seven papers were submitted to the scientific meeting, from which the International Program 
Committee selected sixteen for presentation in the meeting and inclusion in the final Proceedings. 
Most reviews were thorough and constructive, a sign of respect for the work of all the authors who 
submitted their work to the meeting*. There will be a Best Paper Award, and the best 5 papers will 
be published in the Portuguese magazine Robotica. 
 
Though the meeting main goal is to join together the Portuguese researchers in Robotics, it has been 
enriched in recent years by the co‐technical sponsorship of the IEEE Robotics and Automation Society 
(RAS), the inclusion of world top researchers in the Steering and International Program committees, 
and the submission of several papers from abroad. This year 8 of the submitted papers were co‐
authored by a majority of non‐Portuguese colleagues. Vijay Kumar has honored us by accepting our 
invitation for two talks during the competition days, presenting his sound and exciting work on 
multirobot systems. 
 
We would like to thank several people and institutions who made Robotica2011 possible. IST 
President, Prof. António Cruz Serra, for his enthusiastic support since the very beginning, other 
members of IST's Conselho de Gestão who worked with us directly (Palmira Silva, Vítor Leitão), NME, 
especially Ricardo Baeta, for the fantastic work on the web page, not forgetting the space, 
infrastructure and personnel provided free of cost, Ciência Viva for its recurrent financial support and 
dedication to the cause of the promotion of S&T in Portugal, our main sponsors Technical University 
of Lisbon and INFAIMON, the Portuguese Foundation for Science and Technology, IEEE RAS, CGD, BPI, 
IPL and, of course SPR and its Specialized Committee for the Festival. The Associated Labs for Energy, 
Transports and Aeronautics and Institute for Systems and Robotics are our research institutions and 
supported our participation in the event. Last, but not the least, we thank all the members of the 
Local Organizing Committee, Volunteers and IST workers who did all the work that made it possible. 
 
We hope you will enjoy Robotica2011! 
 
Pedro Lima, Carlos Cardeira 
 

   
 

 
 

*The papers co‐authored by one of the organizers were reviewed by a set of reviewers selected by the other 
organizer, whose names are not known to the organizer co‐author. 
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Venue 

Congress Center, Instituto Superior Tecnico 

         

Conference Programm   

08:30‐08:50  Registration         

08:50‐09:00  Welcome session         

09:00‐10:40  Session 1: Navigation & SLAM   
    Chair: 

09:00‐09:25  Tiago  Nascimento,  André  Gustavo  Scolari  Conceição  and  António  Paulo  Moreira,  
A Modified A* Application to a Highly Dynamic Unstructured Environment 

09:25‐09:50  Fernando Carreira, João Calado and Carlos Cardeira, Mobile Robot Navigation Planning 
in a Human Populated Environment 

09:50‐10:15  Josep Aulinas, Amir Fazlollahi,  Joaquim Salvi, Xavier  Lladó, Yvan Petillot, Rafael García 
and Jamil Sawas, Robust automatic landmark detection for underwater SLAM using side‐
scan sonar imaging 

10:15‐10:40  Claus Lenz, Thorsten Röder, Markus Rickert and Alois Knoll, Distance‐weighted kalman 
fusion for precise docking problems  

10:40‐11:00  Coffee‐Break     

11:00‐12:40  Session 2: Planning and Decision‐Making   
    Chair:       

11:00‐11:25  Susana  Brandao, Manuela  Veloso  and  João  P.  Costeira,  Active Object  Recognition  by 
Offline Solving of POMDPs 

11:25‐11:50  Jesus Capitan, Luis Merino and Anibal Ollero, Multi‐robot coordinated decision making 
under mixed observability through decentralized data fusion 

11:50‐12:15  Bruno  Lacerda,  Pedro  U.  Lima,  Javi  Gorostiza  and  Miguel  Salichs,  Petri  Net  Based 
Supervisory Control of a Social Robot with LTL Specifications 

12:15‐12:40  Ana Rita Mendes, Matthijs  Spaan  and  Pedro U.  Lima,  Planning  under Uncertainty  for 
Search and Rescue 

12:40‐14:00  Lunch         
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14:00‐15:00  Panel 1: Robot Competitions as a Means to Foster I&D and Education in Robotics 
       

15:00‐16:15  Session 3: Perception   
    Chair:           

15:00‐15:25  Miguel Armando Riem De Oliveira and Vitor Manuel Ferreira Dos Santos, Autonomous 
Driving Competition: Perception Approaches used in the ATLAS Project 

15:25‐15:50  Nicola  Greggio,  Alexandre  Bernardino  and  José  Santos‐Victor,  Robotic  Color  Image 
Segmentation by Means of Finite Mixture Models 

15:50‐16:15  Arnau Ramisa, David Aldavert, Shrihari Vasudevan, Ricardo Toledo and Ramon Lopez De 
Mantaras, The IIIA30 Mobile Robot Object Recognition Dataset 

16:15‐16:30  Coffee‐Break         

16:00‐16:50  Session 4: Humanoids 
    Chair:       

16:00‐16:25  Luis Rei, Luis Paulo Reis and Nuno Lau, Optimizing a Humanoid Robot Skill 

16:25‐16:50  Nima  Shafii,  Luis  Paulo  Reis,  Nuno  Lau  and  Lucio  Sanchez  Passos,  Humanoid  Soccer 
Robot Motion Planning using GraphPlan      

16:50‐18:05  Session 5: Learning, Estimation and Applications    
    Chair:       

16:50‐17:15  Manfred  Hild,  Matthias  Kubisch  and  Sebastian  Höfer,  Using  Quadric‐Representing 
Neurons (QRENs) for Real‐Time 

17:15‐17:40  Serge  Kernbach,  Multi‐Modal  Local  Sensing  and  Communication  for  Collective 
Underwater Systems 

17:40‐18:05  Marcelo  Petry,  Luis  Paulo  Reis,  Antonio  Paulo Moreira  and  Rosaldo  Rossetti,  Ricardo 
Toledo and Ramon Lopez De Mantaras, Intelligent Wheelchair Simulation: Requirements 
and Architectural Issues 

18:05‐18:15  Closing  session    

20:00‐22:00  Conference Dinner 
    Award Ceremony     

 

Note:  25 mn are allocated per oral presentation, including Q&A.       
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A Modified A* Application to a Highly Dynamic
Unstructured Environment

Tiago P. Nascimento, Member, IEEE, André G. S. Conceição, and António Paulo Moreira, Member, IEEE,

Abstract—This paper presents an application of a modified A*
path planning algorithm in a highly unstructured environment.
The A* allows the robot to get to the target fast and with few
collisions, avoiding obstacles that move as fast as, or even faster
than the robot. Two major changes were made, the consideration
of an obstacle’s safe distance (slack) and an suboptimal value
K for gaining in processing time. Some simulations were made
using a crowded and highly dynamic environment with twelve
randomly moving obstacles. In these first simulations, a middle
sized 5DPO robot was used improving the issues involving the
robot in following the planned path.

Index Terms—Path planning, mobile robots, obstacle avoid-
ance, dynamic unstructured environment.

I. INTRODUCTION

PATH planning algorithms form a well known area of
research in mobile robotics. It’s a study that involves

from a single robot movement to a group of mobile robots
moving in a specific formation. Issues like static or mobile
obstacles avoidance, known or unknown worlds and structured
or unstructured environments and single or multiple robots’
motion are the main study cases in path planning. In this paper
it’s presented an application of the A* path planning algorithm
as a strategy for robot motion planning in the attempt to avoid
a crowd of mobile obstacles, sometimes even faster than the
robot itself. For instance it’s considered a simple target for the
robot to reach.

Motion planning algorithms are widely used nowadays.
UAV path planning [1], mobile robot outdoor navigation [2],
mobile robot indoor navigation [3] and even in video games [4]
can be found path planning algorithms to be the solution for
many motion planning issues. In this work, it’s used the indoor
environment for mobile robot path planning aiming a preset
target while avoiding mobile obstacles in high velocities. The
robots used are the omnidirectional robots used in the Middle-
size League (see Fig. 1) from soccer robot championships. A
good modeling and control for this platform can be found in
[5], [6] and [7] respectively.

Many path planning techniques rose over the years. One
among the most famous is the artificial potential field ap-
proach. This methodology has been widely used and it states
that the collision-free trajectory is generated along the negative
gradient of the defined attractive and repulsive potential-
field functions. The subsequent studies can be found in [8],

T. P. Nascimento, and A. P. Moreira are with the Department of Electrical
and Computer Engineering, Faculty of Engineering from University of Porto
and INESC-Porto, Porto, 4200-465 Portugal (e-mail: tiagopn@ieee.org and
amoreira@fe.up.pt).

A. G. S. Conceição is with Department of Electrical Engineering, Federal
University of Bahia, Salvador BA, Brazil. (e-mail: andre.gustavo@ufba.br).

Fig. 1: The 5DPO Middle Size Robot

[9], and [10]. Nonetheless, the potential-field method is not
straightforwardly applicable to mobile vehicles with kinematic
constraints since, in the potential-field design, the robot is
usually treated as a simple particle. Another major problem is
since it’s an essentially fastest descent optimization method,
it can get trapped into local minima of the potential function
other than the goal configuration [11].

Over the years solutions for the motion planning problems
were also found in artificial intelligence algorithms such as
neural networks and fuzzy logic. In early years the use
of fuzzy logic was an option for easy controllable systems
[12], [13]. Recently, neural networks approaches rose showing
considerable results. In [14], the authors propose a neural
network based path planner used in multiples nonholonomic
mobile robots with moving obstacles. Other authors use neural
network approach of non moving obstacles avoidance [15].

Among the most famous is also the Roadmap method. This
method can be seen in [16] where a computational geometry
data structure was proposed to solve the problem of an optimal
path generation between a source and a destination in the
presence of simple disjoint polygonal obstacles. In [17] a good
application of the Roadmap method is applied where the use
of multiple mobile robots in a common environment such as
underground mining and warehouse management problem are
considered despite no randomly moving obstacles are used.
The Roadmap method is well applied for low-dimension con-
figuration spaces and sometimes, depending of the approach,
no easy to implement [11].

Finally, the last method among the most classic algorithms
for path planning is the Cell Decomposition [11]. In this
category are famous and efficient algorithms such as A*,
D*, ARA* and AD*. The A* algorithm is the oldest. It’s
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well applied with static [18] and dynamic obstacles [3]. The
advantage nowadays of the Cell Decomposition methods is
that with the current technology, it is no longer applied to
indoor or small spaces. It can be applied from UAV obsta-
cle avoidance [1] to unknown environments [2]. In [19] it
was developed an approximate cell-decomposition method in
which obstacles, targets, sensor’s platform, and FOV (Field of
View) are represented as closed and bounded subsets of an
Euclidean workspace. A good overview about the advantage
and disadvantage of these algorithms cam be seen in [20] and
[21].

In this paper it’s presented a novel application based in the
A* algorithm for highly dynamic and crowded environments.
In the next section the problem is formulated describing the
issue studied. In section III, the A* path planning algorithm
is explained. The results of the experiments and simulations
are shown in section IV. Finally, the conclusion is shown in
section V.

II. PROBLEM FORMULATION

As a test bed for the produced algorithm evaluation it was
used the robots from robot soccer competition from FEUP,
5DPO - Middle Size league. The middle size league can run
up to 2.5ms−1 in a straight line. The evaluation was done
in a simulation environment using a software called SimTwo
developed by professor Paulo Costa, PhD, from FEUP with the
middle size league robot. In this simulation, the used field has
8x10m of size. Also, the grid cell used in A* had 0.05m of
size, which was chosen to be the bast size by tests of accuracy
an precision with different sizes of cell. The A* path planning
algorithm was implemented in a software written in free Pascal
Lazarus compiler which communicates with SimTwo or the
real robot by using UDP protocol.

All simulations were made with the SimTwo software.
This software uses an Open Dynamic Engine library [22],
[23] which guaranties an exactly realistic simulation from the
dynamic of rigid object, resulting in the object’s behavior
very close to real. The robots, nevertheless, were highly and
rigorously previously parametrized in SimTwo [5] and [24],
which makes this platform a realistic and ideal simulation envi-
ronment for tests with path planning algorithms. A screenshot
from the program can be seen in the Fig. 2.

Now, let A be a single rigid object - the robot - moving in
a Euclidean space W, called workspace, where W ∈ <2. As
can be seen in the figure, the simulation sets a 5DPO middle
size robot as the rigid object A. In this workspace it’s placed
in an initial position qinit marked with a small circle. In the far
side of the workspace W, the target point qtarget is marked also
with a small circle as well. In between the initial and target
point there is a bigger circle centered in the middle of the field
where it should symbolize any crowded environment such as a
shopping mall’s hall or a factory corridor, where people have
to pass in a random trajectory, or even a near beach air space,
where many flaying animals cross a UAV’s pass.

Let B1,. . . ,B12 be also, in a first case, fixed rigid objects
distributed in W. It is known that the configuration space
of A is the space C all configurations of A. Therefore, all

Fig. 2: The SimTwo Simulation Environment

obstacles Bi in the workspace W maps in C to a region
CBi = {q ∈ C/A(q) ∩Bi 6= 0} which is called C-obstacle.
The union of all C-obstacles is called C-obstacle region, and
therefore the set:

Cfree = C\
n⋃

i=1

CBi = {q ∈ C/A(q) ∩ (

n⋃
i=1

CBi) = 0} (1)

is called the free space
Therefore, the problem becomes: Given an initial position

and orientation and a target position and orientation of A in
W, generate a path τ specifying a continuous sequence of
positions and orientations of A avoiding contact with the CBi’s,
that minimizes the path τ that starts at the initial position
and orientation qinit, and terminates at the target position and
orientation qtarget. Report failure if no such path exists [11].

In a second case, let assume now that Bi(t) designates the
region of W occupied by the object Bi at time t (t ≥ 0).
Therefore, the dynamic motion planning problem is to plan a
collision-free motion of A from the initial configuration qinit
at time 0 to the target configuration qtarget at time T ≥ 0. The
time T is called the arrival time. The planning problem here
requires that a function of time be generated which specifies
the configuration of A at every instant in the interval [0,T].
Therefore, the solution of this dynamic path planning problem
is to minimize the trajectory of A with respect to the time t
[11]. This trajectory to be minimized is the equation 4.

t ∈ [0,T] 7→ q(t) ∈ C\
n⋃

i=1

CBi(t) (2)

As the C-obstacles are no longer static, in another words
they vary their position and orientation with t, it can no longer
be represented as in the problem before. This issue is solved
by simply adding a dimension to C, obtaining therefore, CT =
Cx[0,+∞), which is called configuration space-time of A.
Thus, every obstacle Bi maps in CT to a stationary region
CTBi, called a CT-Obstacle, defined by:

CTBi = {(q, t)/A(q) ∩Bi(t) 6= 0} (3)

III. THE A* PATH PLANNING ALGORITHM

It’s known that most environments are highly dynamic, with
obstacles moving randomly and with the dynamic constrains
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Fig. 3: Resulting Graph from the Cell Division

Fig. 4: Map Cell Decomposition

of the robot. The objective then is to find the optimal path
between the initial point qinit and the target point qtarget.
The A* algorithm is used to do this tasks, even when the
environment is highly dynamic. Therefore, one of the concepts
that it’s needed to highlight is that the optimal path in most
of the cases is not the optimal solution, in another words, the
best path is not the shortest one, but the fastest one. That
is because the robot’s velocity is not constant (the robot has
limited acceleration) and the robot’s controller has difficulty
in following trajectories with abrupt changes in direction. To
do that, two modifications were made in the A* algorithm to
achieve an optimal solution.

A* is a graph search algorithm which calculates the shortest
path through a graph between the initial and final node. This
algorithm uses a heuristic function

F(n) = g(n) + h(n) (4)

which estimates the lowest cost of going from the initial to the
target point while passing through node n. This sets the order
to search for nodes in a way to find the best path as soon as
possible. This function is the sum of two other functions.

Fig. 5: Obstacle’s total radius

1) g(n) = Cost from the origin to node n;
2) h(n) = An heuristic to estimate the cost of the path from

node n to the target node.
In this algorithm there are two lists: the O-list and the

C-list. The open list, known as the O-list, contains the nodes
that are candidates for exploration. The closed list, known
as the C-list, contains the already explored nodes. The nodes
from C-list where previously in the O-list but as they where
explored, they were moved for the C-list. The nodes in
these lists store the ”father” node, which is the node used to
optimally reach them. This is the node that lies in the shortest
path from the origin to current node. The A* algorithm can
be seen below.

Algorithm A*
1: Add the initial node to O-list
2: Do
3: Choose n∗ from O-list in which
4: F (n∗)≤F (n) ∀ n ∈ O-list
5: Remove n∗ from O-list and put into the C-list
6: For all n ∈ Star(n∗), which n /∈ C-list, do:
7: if (n /∈ O-list) then
8: add n node to O-list
9: else if (g(n∗)+c(n∗,n) < g(n)) then
10: change the father node from n to n∗
11: end
12: end
13: While (O-list 6= 0) or (n∗ = end node)

where:
1) Star(n∗) = The set of neighbors to node n∗
2) c(n1,n2) = Cost from going from node n1 to node n2
3) n∗ = Best note in the neighborhood
Once presented the algorithm, it becomes important and

necessary to emphasize some considerations. Mainly, it’s
known that the path τ is optimal if an heuristic function h(n)
is admissible. This happens if the function never overestimates
the cost to reach the destination, or in another words if

h(n) < hm(n)∀n (5)

where hm(n) is the lowest cost from n until the destination.
To use the A* algorithm in the calculation of a robot’s path,

it’s necessary to divide the environment map in cells, as stated
in the method approximate cell decomposition. Here, each cell
represents a node. Each node can be connected to other nodes
and moving from one node to the other has an associated cost
(Fig. 3). In this case, the cost is the metric distance between
the cell centers. The A* can calculate the path that minimizes
the cost from moving from the starting cell to the target cell.
In Fig. 4 the black cells represent the obstacles, the yellow
cell represents the initial position (node) and the blue cell
represents the destination point (node).

Finally, it’s considered that the robot A in the workspace
W is represented by the initial node and that occupies only
a single node, being this last one the geometric center of
the objects in a top view. The destination node is the target
point qtarget. All other moving objects are considered C-
obstacles (CBi). As the robot is represented by a single cell,
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the obstacles have to be bigger in a way to represent both
obstacle and robot’s body. These obstacles are represented by
circles with their radius equal to the sum of the obstacle’s
radius and the robot’s radius. This representation can be seen
in the Fig. 5.

IV. THE MODIFICATIONS

Fig. 6: Obstacle with a slack zone. The black intensity means
a higher cost.

The first modification changes the way an obstacle is
represented in the cells. A security area is created around the
obstacle. This area is built by making the obstacle a little
bigger to create enough space to avoid them and compensate
the control errors. This security zone should be avoided as if
it was the obstacle.

The second change addresses a modified heuristic for the
A* search algorithm that reduces the computing time and finds
the optimal search effort level, having in mind the computing
time and the optimal path costs. The adjustment is done by
setting the correct heuristic parameter k. Using equation 6
with k = 1 there is the guarantee that the final solution is
optimal. Using higher value for k the search space is reduced
and the solution found can be suboptimal.When performing
a path planning with the original A* method with different
k values it can be noticed that as k increases, the region of
possible paths decreases. As a result, it is possible to observe
that computing time can be controlled possibly paying the
price of having a non optimal path where the length of the
path found is extended. In fact, k affects processing time and
path length. While the first increases, the second decreases.
Assuming the cost as a weighted sum of both variables, it can
be found an optimized k. It will depend on the path type and
obstacles. In a static environment it can be meaningless, but
in a dynamic one no.

h(x, y) = k
√

(x− xt)2 + (y − yt)2 (6)

So, it is desired to optimize the cost function that depends
on two factors: the computing time cost (Ctime) and the result
of the search space cost (Css). The total cost (CTOTAL) can be
described in equation 7 where α and β are weighting constants.
Initially, α and β are unitary and can be changed to set the cost
weight (time and distance). The computing time cost reflects
the price of a late solution in real time task.

CTOTAL = αCtime + βCss (7)

Therefore, in this modified A* algorithm, if it’s not in the
optimized mode, the search space cost (Css) is the optimum
but it requires a lot of computing time, sometimes impossible
to reach in a real time scenario. So it is desired to find a

Fig. 7: Average total cost

compromise between computing time and the result quality
(optimizing the cost function). As a result of simulations, the
average total cost can be seen in the Fig. 7. It is possible to
obtain the minimum cost for a k = 1.2.

V. RESULTS

The simulations can be divided in two types of environ-
ments: static and dynamic. The first set of simulations has the
objective to observe behavior of the A* in a static environment,
or in other words, in a structured environment. The second set
of simulations has the objective to observe this same behavior
in an unstructured highly dynamic environment with mobile
obstacles that move ”randomly” with speeds that, for some of
these obstacles, can be higher that the speed of the robot itself.
Finally it’s important to mention that all simulations (static and
dynamic) started with all objects (robot and obstacles) at the
same position.

The Fig. 8 the trajectory calculated by the A* algorithm can
be seen. Note that A* builds a path from the robot’s initial
point to the target point that passes around the obstacles.

For the simulations in the unstructured environment the
movement of the obstacles is set to be half random. That’s
because those movements are set by a simple algorithmic
procedure in SimTwo. As it can be seen in the following
algorithm, this uploads the values from each sphere and
sets a force upon each one, making the movements. With a
constant velocity for all the spheres, the movements of each
one is practically always the same, except if the robot hits
one or more sphere. In Fig. 9, the discrete evolution in A*

Fig. 8: A* path planed for static environment. The straight line
is the distance from the robot to the target and the curved line
is the A* generated path.
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Fig. 9: A* Dynamic Simulation results with discrete instants t=1,2,3,4,5,6,7 and 8

path planner, until reach the target, can be seen. An important
observation in the last sub-picture is that the track became
static and the robot is choosing not to use the A* algorithm
due to the fact that there are no more obstacles around or
near it. Therefore, SimTwo prints on screen the last track
calculated by the path planner in case.

Algorithm Set Sphere Speed
1: If ∃ Sphere then
2: NexPositionx=Initialx+Radius·cos(Speed·(t+δ))
3: NexPositiony=Initialy+Radius·sin(Speed·(t+δ))
4: Set Force of ith-Sphere with
5: Vx = 100*(NexPositionx - Positionx)
6: Vy = 100*(NexPositiony - Positiony)
7: Vz = 0
8: end
9: end

Note now how A* recalculates the path in order to avoid
the collision points. As it can be also observed in Table I,
the results made by A* are satisfactory, not only in terms
of getting to the target point, but on avoiding collisions in a
crowded environment that even for humans can be sometimes
unavoidable.

TABLE I: Dynamic Obstacles Result

Average Measurements in 30 simulations A*
Average Time to Reach Target 29.72s
Average Number of Collisions 3.4

The existing collisions are due to the entrapment that occurs
to the robot by the moving obstacles. Therefore, the collisions
became unavoidable, for the obstacles go towards the robot.

VI. CONCLUSION

This paper presented a new application of the grid-based
path planning algorithm A* using two modifications: slack
and sub-optimal K value. The first modification builds a
security space around the obstacles making them bigger, while
the second allows the A* to calculate a faster path making
the processing time smaller. Some simulations were made
using a crowded and highly dynamic environment with twelve
randomly moving obstacles. The simulations were divided in
two types of environments: structured and unstructured. The
path planner A* built an entire path around the obstacle. In
a static environment the robot passed through the obstacles
avoiding them successfully. In a unstructured environment the
A* algorithm had to re-plan the path to succeed in reaching the
target point while avoiding the obstacles. The path construction
made by A* was considerable, not only in terms of getting
to the target point, but on avoiding collisions in a crowded
environment.
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Abstract— In recent years, the introduction of mobile robots 

in populated environments like industry, houses and services, 

created new challenges for robots, who must consider the 

emotional reactions shown by humans when faced with 

unexpected moving robots in their field of view. In particular, it 

is necessary that path planning algorithms have in 

consideration the presence of humans and their feelings of 

safety and comfort. Actually, avoidance of human obstacle 

should not be based in the same techniques as avoiding classic 

rigid obstacles. In this paper is described the implementation of 

a path planner that takes into consideration the localization, 

orientation and different comfort distances of humans. The 

robot motion through the generated path planner was 

simulated in a virtual reality scenario based in CAD and 

VRML objects. The virtual reality is integrated in the 

Matlab/Simulink model providing integration of the robot in 

the environment. This leads to very realistic views of the robot 

paths allowing a better perception of the motion in the human 

populated environment. 

I. INTRODUCTION 

avigation to a certain goal does not only mean to 

find and follow the shorter path to there, but 

essentially to know and decide what is the better 

way to get there. In fact, finding a path between two places 

that guarantees safety navigation is not always easy because 

environments normally have many obstacles that increase 

the collision risk if the robot does not have the ability to 

achieve a good-quality path [1]. 

The introduction of robots in humans daily life [2] creates 

new challenges that did not exist in industrial environments, 

where they are usually physically separated from humans 

[3]. In a populated environment with robots, the accident 

risk caused by a robot hitting a person is constant and this is 

one of the most common accidents [4], which must be 

minimized. 

Thus, it is important that robots adopt their behaviour 

according to the humans activities [5], in order to avoid 

conflicts, provide courtesy [6], and guarantee a safe, reliable, 

effective and socially acceptable motion [3]. 
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Fig. 1. 3D virtual prototype of i-MERC 

 

For instance, [7] has developed the concept of an 

automatic vehicle - i-MERC (Fig. 1), in two versions: 

mobile robot and power-assisted, for the transport of meals, 

with an omni-directional locomotion system, temperature 

control and management of food hospitals [8-10] drift. 

Considering such a system implemented in populated 

hospital environments, it is very important that its motion 

could be friendly, safe and socially acceptable. This problem 

led the authors to develop a mobile robot planner to a human 

populated environment combining a potential fields path 

planning method [11] and the safety issues defined in [3]. 

The scope of this planner is obtaining a safer and more 

reliable robot path planning in the presence of humans. 

This paper is organized as follows: section two describes 

the proposed mobile robot planner based on a potential 

field’s method and the details concerned with the human 

repulsion forces. The third section describes the 

implemented model and the virtual reality scenario which 

allows the simulation of the robot movement in a populated 

virtual environment. The simulation conditions and the 

different scenarios as well as the results will be described in 

the fourth section; this section will address several operating 

conditions that include different initial poses of the robot and 

humans. The fifth section will present the virtual reality 

results of the path planning method and the trajectory control 

simulations when the robot meets humans in different poses. 

Finally, in the sixth section, some conclusions about the 

present navigation planning method and a discussion about 

near future tasks that should be undertaken are presented. 

A Mobile Robot Navigation Planning 

in a Human Populated Environment 

Fernando Carreira, J. M. F. Calado and Carlos Cardeira 

N 
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II. MOBILE ROBOT PLANNING IN A HUMAN POPULATED 

ENVIRONMENT 

Traditionally, path planning with potential fields aims 

driving the robot through a potential field that gives rise to 

attractive and repulsive forces created by higher and lower 

potentials. This path planning methodology represents 

obstacles as higher potential points that repel the robot being 

the goal to reach a lower potential location that attracts it. 

However, potential fields methods consider that obstacles 

are all of the same type and the only goal is to avoid the 

collisions with the obstacles [11]. The path to avoid the 

obstacle does not take into account different possible 

reactions that may occur if the obstacle is a human. In our 

approach, it has been considered that obstacles are humans, 

which have repulsive forces around them. However, instead 

common potential fields methods where a repulsive force is 

uniform around obstacles; the repulsive force in our 

methodology is based on the human pose, in order to provide 

a safe and reliable mobile robot path (Fig. 2). 

 
Fig. 2. Potential fields with humans 

 

A. The Humans Repulsive Forces 

Usually, the path planning based on potential fields 

considers a repulsive force caused by obstacles, which repel 

the robot, but the different nature of objects and humans is 

disregarded. 

In the proposed method the repulsion field is not uniform 

around the humans since they perceive differently their 

surrounding areas. In [3], the authors identify two important 

aspects in the definition of a safe and reliable path planning 

in a robot-human interaction situation: the safety and 

visibility criterions. 

The proposed method borrowed inspiration from these 

criteria for the definition of a repulsive field around humans. 

Thus, it has been considered that the human repulsion forces 

are a function of two repulsive forces, namely “repulsive 

safety force” and “repulsive visibility force”, which improve 

the safety and the comfort of the human, respectively. 

 

1) Repulsive safety force 

Unlike objects, where security distance should be the 

minimum necessary to prevent accidents, humans need a 

personal distance to possible harming equipment that assures 

a feeling of safety. This distance is a function of the 

personality and culture of each person but, for a public zone, 

the minimal personal distance will be about 3m [12]. 

This safety distance should be adapted to humans states: 

standing up, sitting, etc., since humans normally have less 

mobility when sitting than when standing  up [3]. 

Thus, a repulsive safety force define by a 3D Gaussian 

shape around the human which output is a function of xy 

robot coordinates, as described in the equation 1. 
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where hx and hy stands for the human position,  is a 

parameter given by the following equation,       , being 

d the human-robot safety distance that should be 

parameterized according to humans states, culture, age, etc. 

In Fig. 3, the repulsive safety field for a personal safety 

distance of 3m. 

 
Fig. 3. The repulsive safety field around a human (in cm) 

 

1) Repulsive visibility force 

However, beyond the safety criterion presented, when 

humans are in a bustling area with moving machines, 

normally, they feel more comfortable when the machines are 

in their field of view. Sisbot et al. [3] call this feeling as 

“mental safety – comfort”. This means that the humans 

comfort when the robot is in the field of view because they 

can follow its motion with them own eyes and can react to 

any endangering movement. 

In order to meet this human notion of comfort and safety, 

a repulsion field based on the human visibility of the robot, 

has been defined. Once that humans can see (with both eyes) 

approximately 180 degrees in horizontal [13], following this 

criterion, the area behind the human is very uncomfortable 

since humans cannot see the robot and predict its motion. 

Thus, the proposed methodology consider that the repulsive 

visibility force is a 3D Gaussian function in the area behind 

the human and null in the front of him, as it is described in 

the equation 2, 
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where  is the angle between the direction of the human to 

the calculation point and the one for which he faces, defining 

if the point is ahead or behind human: 

 

         
    

    
  (3) 

 

Like the repulsive safety force, the repulsive visibility 

force should be adapted to different scenarios, through the 

safe distance parameter. In Fig. 4 the repulsive visibility 

field for the same safety distance as in fig 3 (3m), is shown. 

 
Fig. 4. The repulsive visibility field around a human (in cm) 

 

2) The human repulsive force 

Once the safety and visibility repulsive forces are 

available, the human repulsive force is computed as a 

weighted sum of the both forces [3]. This approach allows, 

not only to combine the different aspects, but also to assign 

different relevance to each one, as is represented by equation 

4. For example, for different situations or persons, in some 

cases, it can be given more importance to safety and, in 

others, to the visibility comfort. 

 

                                (4) 

 

where w1 and w2 are the weighing factors of security and 

visibility repulsive force. 

In Fig. 5, the human repulsive field, considering an equal 

weighted sum of both repulsive fields, is depicted. 

 
Fig. 5. The human repulsive field (in cm) 

 

3) The attractive force  

For the attractive field, the method proposed in [11] has 

been followed, which defines such a field as the inverse of 

the distance between the robot position and the goal being 

described by equation 4, 

 

        
 

       
 
       

 
 (5) 

 

where gx and gy are the goal coordinates. 

III. SIMULATIONS AND RESULTS 

In order to test the mobile robot navigation planner when 

the robot passes through humans, different orientations and 

configuration was performed and analysed. In the 

simulations, it was expected to see the robot moving towards 

the goal point while maintaining a safety and comfortable 

distance from humans when passing near them. 

First, it has been conducted tests with the path planner 

parameterized with a safety distance of 1m without the 

addition of the visibility criterion. With this configuration, 

the path planner, with the classical obstacles avoidance 

(without being human aware), has been simulated. Fig. 6 

shows that with two persons near the robot, it has been 

chosen the shorter path, ignoring the humans comfort 

distance. 

 
Fig. 6. Robot passes in front of humans (no safety criterion was taken into 

account) 

 

The second test was concerned with only one person in 

four different poses: two 0.5m above the start-target line 

(Fig. 7 and 8) and two 0.5m below it (Fig. 9 and 10). 

 
Fig. 7. Robot passes in front of human (short path) when he is above the 

line (robot find him on its left) 

 

In this test, the robot moves from left to right and the 

results show that when the robot finds a human on its left 

avoids him by turning to the right and to the opposite side 

when it finds him at its right. 

However, contrarily to what would happen with the 

traditional potential fields method, the path is shorter when 

the human is facing to the robot path (Fig. 7 and 8) than 

when the robot is folowing a path on the human back (Fig. 8 

and 10). 
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Fig. 8. Robot passes behind of human (longer path) when he is above the 

line (robot find him on its left) 

 

 
Fig. 9. Robot passes in front of human (short path) when he is below the 
line (robot find him on its right) 

 
Fig. 10: Robot passes behind of human (long path) when he is below the 

line (robot find him on its right) 

 

Further tests have been performed considering the path 

planner with 2 persons facing the start-target line, and 

different safety parameters (Fig. 11-14). 

With 4m of distance and 40% to the safety criterium, the 

robot avoids both humans leaving more distance when 

getting close to the second person (Fig. 11). 

 

 
Fig. 11. Robot passes around humans 

 

When the safety distance has been decreased to 3m (Fig. 

12) and 2.5m (Fig. 13) the robot began to pass between 

humans. As expected, the path with 3m of safety distance 

present a route with a greater bend than with 2.5m. 

In the last test, a distance of 4m around humans in the 

same pose, but without consider the safety criterium, has 

been considered. As the humans are facing the shorter robot 

path, the robot follow it, doing the same way than in the fisrt 

simulation, in other words, doing the same when the 

traditional obstacle avoidance methods (Fig. 14) are used. 

 

 
Fig. 12. Robot passes between humans with great bends 

 

 
Fig. 13. Robot passes between human with smooth bends 

 

 
Fig. 14. Robot passes trough he shorter path 

IV. VIRTUAL REALITY SIMULATION 

To implement the mobile robot navigation planner, we 

developed a specific tool in MATLAB
®
/SIMULINK

®
 (Fig. 

 

15) where we can configure the simulation parameters as 

human and robot pose in map, safety criterions, or analyze 

the generated path before the simulation. 

To increase de reality of the simulation of mobile robot 

navigation in an environment with humans it has been 

developed virtual reality scenery where the humans (shape 

and pose) were included by the developed tool, 
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Fig. 15. MATLAB® tool to config the humans  
 

The animation in virtual reality environment aside the 

simulation were implemented with the blocks of Simulink 

3D Animation Toolbox. With this animation, we can have a 

better perception how i-MERC moves through humans in a 

hypothetical hospital, but also could be played to show the 

concept of mobile robot human aware navigation planner’s 

researches or potential customers of robots working in 

environments with humans. 

The robot and the hospital scenery were modelled in 

Solidworks
®
 (3D CAD software), being the 3D model of the 

robot, the same that could be used by a design engineers on 

its concept development or process production. 

Nevertheless, the human avatars were chosen from the 3D 

ContentCentral
®
 [14] public dataset. The 3D models were 

converted to VRML (Virtual Reality Modelling Language) 

format and several viewpoints were defined in order to 

assess the global and human level perception of the resulting 

paths (Fig. 16). 

To simulate motion, the coordinates and orientation of 

robot and humans were parameterized. Thus, the xy 

 

 
Fig. 16. The virtual reality simulation 

translation and the rotation considering z have been used as 

the inputs to the VRML virtual world. 

During simulation, these values are sent from the robot 

model to the VRML world, through the Simulink 3D 

Animation Toolbox, thereby producing an animation of the 

simulated situation. 

V. VIRTUAL REALITY RESULTS 

Simulations were also performed using the Virtual Reality 

Scenarios providing a better perception of the robot path 

around humans. 

Thus, Fig. 17 shows that in the first (Fig. 6) and last (Fig. 

14) simulation, the robot effectively passes very close to 

humans may causing some discomfort or insecurity. The 

Fig. 18 shows the simulation when the path planner defines a 

route around both humans (Fig. 11). The Virtual Reality 

Scenario shows that this, effectively, is the more 

comfortable and safe path. However, the robot not always 

has enough free area to follow this path, requiring a shorter 

path. 

 

 
Fig. 17. Robot passes in front of human (Virtual Reality) 
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Fig. 18. Robot passes around humans (Virtual Reality) 

 

In fact, when the safety distance has been decreased to 3m 

the robot followed a shorter path between humans, while 

keeping a safety distance to them (Fig. 19 and 20). 

 

 
Fig. 19. Robot passes between human with great bends (Virtual Reality) 

 

 
Fig. 20. The safety path in Virtual Reality 

 

A video of virtual reality simulations can be found in 

http://www.isel.pt/dem/investigacao/moronau/index.html 

VI. CONCLUSIONS AND FUTURE WORK 

A path planner human aware using the potential fields 

methods, have been developed. Instead of the traditional 

potential field’s methods, the approach followed in this 

paper uses a potential field being a function of the human 

“mental safety” distance and considering the existence of 

safety and visibility criterion. Thus, the generated path not 

only depends on the distance to humans but takes into 

account the humans’ orientation. 

Furthermore, the developments of a tool enable to 

configure easily different sceneries and create virtual reality 

scenarios which allowed a better understanding of the robot 

movement in a populated environment. 

As future work, we will optimize the algorithm trying to 

eliminate the discontinuities of the function when the robot 

passes from front to back of a human, but keeping the 

“mental safety” criterions.  

Since the robot has an omni-directional kinematic 

structure, the corresponding advantages will be explored to 

increase the comfort of humans and minimize the robots 

movements along its path. 

After these steps, it has been performed simulations 

considering the motion of humans, creating different and 

more realistic scenarios. To implement these simulations, an 

on-line path planner human aware should be implemented 

becoming the robot sensible for the dynamic of the 

environment. 
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Robust automatic landmark detection for underwater SLAM using

side-scan sonar imaging

Josep Aulinas, Amir Fazlollahi, Joaquim Salvi, Xavier Lladó, Yvan R. Petillot, Jamil Sawas and Rafael Garcı́a

Abstract— Simultaneous Localization and Mapping (SLAM)
consists on building a map of an unknown environment, while
simultaneously determining the location of the vehicle within
this map. Building a map implies finding a proper representa-
tion for its salient features, which are used as landmarks for
the localization problem. These landmarks must be very robust
in order to be easily detected once reobserved. Associating a
new observation with a previously seen landmark provides a
proper input for the map and localization update. Instead,
wrong associations introduce divergences and inconsistencies
in the results. The aim of this paper is to introduce an
approach able to detect objects in side-scan sonar images.
Side-scan sonar provides high resolution acoustic images, in
which an object appears as a bright spot with a dark shadow
trail. In order to have a fast and robust object detector, we
adapted the framework introduced by Viola and Jones, in
which a cascade of classifiers was used to perform a fast
face detection with high detection rates. The performance of
our detection method is presented, together with the SLAM
results obtained after using our robust landmark detector. The
results produced high detection rates and small number of false
positives, demonstrating the validity of our approach.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) also

known as Concurrent Mapping and Localization (CML) is

one of the fundamental challenges of robotics. The goal

of SLAM is to build a map of an unknown environment

while simultaneously determining the location of the robot

within this map [1]. Several methods use features to achieve

the SLAM purpose. These features are used as landmarks

for the localization problem, and as map elements on the

mapping problem. For instance, a point feature based SLAM

solution was presented in [2], as shown in Fig. 1. In

this specific experiment, a vehicle equipped with a laser-

range finder navigates a park full of trees, which are then

represented as point features. Other approaches like the one

in Fig. 2 propose a line feature based SLAM approach [3]. In

this example, an Autonomous Underwater Vehicles (AUV)

navigates an abandoned marina, in which line features are

the best choice to represent the boundaries between water

and land. Finding a proper representation for these features
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Fig. 1. Example of a point feature based SLAM approach [2]. The image
shows the resulting map composed of point features representing trees
together with the SLAM trajectory, represented over a satellite image of
the scenario.

Fig. 2. Example of a line feature based SLAM approach [3]. The image
shows the resulting map together with the dead-reckoning (dash-dotted line),
GPS (dashed line) and SLAM (solid line) trajectories represented over a
satellite image of the scenario.

is a key issue to solve a feature based SLAM problem. These

features must be very robust, in order to ensure that the same

feature will be observed again once revisited. Associating

a new observation with a previously seen feature is the

key to improve vehicle’s localization and the final map.

Instead, wrong associations would introduce divergences and

inconsistencies in the results, and the consequent loss of the

vehicle.

The aim of this paper it to introduce an approach able to
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Fig. 3. Side-scan sonar image example, with five objects shown as bright
spots and its corresponding shadows.

detect objects in side-scan sonar images on-board of an AUV.

Side-scan sonar provides high resolution acoustic images, in

which an object appears as a bright spot with a dark shadow

trail (see Fig. 3). In order to have a fast and robust object

detector, we proposed an approach which follows the Haar

cascade framework [4], [5], in which a cascade of boosted

classifiers was used to detect objects with high detection

rates. Following the same idea to our specific objects, but

with a proper feature selection, the detection is significantly

improved, providing high detection rates and very low false

positives. The performance of our detection method is shown

to be a proper input for the SLAM algorithm, providing a

consistent map and a correct vehicle localization.

The rest of this paper is organized as follows. Section II

briefly summarizes the SLAM approach used. Section III

introduces the proposed object detector, describing the steps

involved in the process. Section IV summarizes the exper-

imental results obtained. The paper ends with conclusions

and future work in Section V.

II. SIMULTANEOUS LOCALIZATION AND

MAPPING

The most known consistent Simultaneous Localization and

Mapping (SLAM) approach is the Extended Kalman Filter

SLAM (EKF-SLAM) [6]. It is based on representing vehi-

cle’s pose and the location of a set of environment features

in a joint state vector estimated and updated by the Extended

Kalman Filter. EKF provides a suboptimal solution due

to approximations introduced when linearising the models,

which may result in inconsistencies [7], and also due to the

assumption that uncertainties associated to the motion and

measurement processes are only additional white Gaussian

noise. In addition, one of the main drawbacks of EKF

implementation is the fact that for long duration missions,

the number of landmarks increases and, eventually, computer

resources will not suffice to update the map in real-time. This

scaling problem arises because each landmark is correlated to

all other landmarks, giving a memory complexity of O(n2)
and a time complexity of O(n2) per step, where n is the

total number of features stored in the map. The correlation

appears since the observation of a new landmark is obtained

with a sensor on-board of the moving vehicle and thus the

landmark location is correlated with vehicle’s location and

other landmarks of the map. This correlation is a key point

for the long-term convergence of the algorithm, and needs

to be maintained during all the mission.

Using submaps both limitations can be addressed at the

same time (i.e. linearisation errors and rise on computational

cost). Therefore, dividing the whole scene into submaps,

which are then joined in a global map, improves the consis-

tency of the EKF-SLAM [7]. Limiting the size of a submap,

by bounding the total number of landmarks or by fixing

the maximum distance traveled by a vehicle, maintains the

uncertainties of the submap and the linearisation errors small.

Another advantage of working with small maps is that the

amount of data involved in the EKF-SLAM is small, thus

computational cost is reduced. Good examples of submap-

ping strategies are the Local Map Joining [8], the Constant

Time SLAM (CTS) [9], the Atlas approach [10], the Divide

and Conquer SLAM [11], the Hierarchical SLAM [12] or

the Conditional Independent Local Maps (CI) [13]. All of

them build submaps first, and then join them following their

corresponding strategy.

The approach used in this paper is the Selective Submap

Joining SLAM (SSJS). The SSJS was demonstrated to pro-

vide good results for terrestrial applications using a well

known dataset in [2], and then for underwater applications

in [14]. This approach consists of several steps:

• A sequence of local maps is built running a basic EKF

SLAM algorithm [8].

• The relative transformation between two consecutive

submaps is stored in a relative stochastic global map

(similar to the Hierarchical SLAM approach [12]).

• Once a local map reaches its end, the global map is used

to generate loop closure hypothesis. Loop hypothesis

are created for those submaps that are near the last local

map.

• These loop hypothesis are then confirmed by means

of data association algorithms, for instance the Joint

Compatibility Branch and Bound (JCBB) [15].

• If a loop closure have been accepted, the number

of common landmarks between submaps determines

whether a fusion and joining steps have to be done.

• Two submaps sharing a high number of features are

fused and joined to a single map, producing an update

to its local features. Instead, two submaps sharing few

features are kept independent.

• Finally, after fusing and joining two submaps, the global

level is updated.

As stated in the introduction, a side-scan sonar is used

in this work to obtain observations, in a similar way to the

implementation presented in [16].

III. OBJECT DETECTION

Side-scan sonar is nowadays widely used in industry and

academic research programs to survey the sea floor [17].

Several approaches tackle the issues related to object detec-

tion and classification, image segmentation and registration,

and feature extraction. For instance, in [19] they proposed a

threshold and clustering theory to segment a side-scan sonar

image into bright spots, shadows and background. A similar
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Fig. 4. Haar-like feature examples.

approach was presented in [18]. Another approach uses

adaptive threshold techniques to detect and extract geometric

features for both bright spots and shadows [20]. In [21]

the authors presented an unsupervised model capable of

extracting, detecting and classifying shadows automatically.

A Markov Random Field (MRF) model was used to seg-

ment the image into regions, using the geometric signature

of mines in side-scan sonar images. A more recent ap-

proach [22], extracts texture features from side-scan images

first, and then a region based active contour model is applied

to segment objects.

Haar cascade framework has first been presented in [4]

for the problem of face detection and provided competitive

results. Recently, this framework has been reinvestigated and

applied to sonar imagery in [5] and proved to perform very

well. This framework can be trained to detect a variety of

object classes and it introduces a new algorithm to construct

a robust classifier [23]. They use Haar-like features which are

really simple (see Fig. 4), fast and cheap to compute using

the integral image (see Subsection III-B). Properly selected

Haar-like features encode the oriented contrasts between

regions in the image and give a quantity for the presence

or absence of contrast characteristics at a specific image

location.

The following sections describe the principles of our

object detector. First, a discussion on the best suited features

for our purpose is summarized. Then, basic concepts related

to the detection process, such as the integral image and the

cascade of classifiers, are introduced. Finally, the training

procedure is briefly described.

A. Feature Selection

Features are usually more efficient to process than pro-

cessing the whole intensity image. In side-scan sonar images,

objects are simple (see Fig. 5), which means that they can be

described only using a few features. Moreover, the perfor-

mance of the classifier is effected by the number of features.

In order to improve this performance, a feature selection is

necessary. In this approach, two different types of features

have been used: Haar-like features and the distance from

the boundary of the object to its centroid. The advantage of

such features is their invariance in front of rotations, scale

changes, intensity shifts and translations.

In this proposal, rectangular shaped features are used.

Although rectangle features are of limited flexibility, they

provide a rich image representation and they can be com-

puted using the integral image representation, what makes

them extremely computationally efficient. The rectangle is

divided into two regions: a dark one in the left, and a

bright one in the right. The proportion of each region is

different in each feature (see Fig. 5). The value of a two-

region feature is the difference between the sum of pixels

within the two regions. Fig. 6 represents a set of features,

some of them not suited for the problem presented in this

work. In contrast, Fig. 7 shows a set of features well suited

for our purpose. These plots represent the ability of the

system to distinguish between true and false positives. The

system used to run these tests is a single weak classifier

analysed using a different feature in each case. Each plot

is for a specific feature, and shows the value obtained for

each training sample after computing the integral image to

the corresponding feature. After analysing different feature

shapes and proportions, it seems that the most discriminative

one is the one with the proportion 8 dark to 1 bright, because

the values obtained for the positive set are easily separable

from the ones obtained for the negative set.

Another significant feature is the distance from the bound-

ary of the object to its centroid, as in [24]. This feature

not only improves a classification stage, but also the object

detection.

B. The Integral Image

Rectangle features can be computed very rapidly using the

integral image (see Fig. 8). The integral image at location x

and y contains the sum of pixels above and to left, as shown

in the figure. This is a very fast computation, which provides

valuable information.

C. The Cascade Classifier

A cascade classifier is a sequence of simple classifiers (see

Fig. 9 from [23]). The main idea behind a cascade classifier

is to detect and reject background information very fast.

The initial classifier eliminates a large number of negative

examples with very little processing. As the detection goes

deeper in the cascade, a higher number of features are used

to reject negative objects. Each layer has a strong classifier

which is made up of one or more weak classifier. It tries to

keep high detection rate in all the layers by decreasing the

Fig. 5. The left column shows real objects as seen in a side-scan sonar
image. The right column shows those Haar-like features best suited to train
the sort of real object from the left column.
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Fig. 6. Comparison of the detection performance using different features not suited for our problem. These features do not distinguish between true and
false positives, due to the fact that the orientation they discriminate is not the one from object in side-scan sonar images. In red the integral image results
for the positive training sample, and in blue the negative ones.

Fig. 7. Comparison of the detection performance using different features well suited for our problem. These features produce proper distinction of true
and false positives. They are very similar to real object in side-scan sonar images, but with different proportions.

Fig. 8. The value of the integral image is the sum of all the pixels in the
white region.

threshold of the strong classifier. Classifiers and their relevant

features are selected using AdaBoost [25].

D. Training Stage

At every stage of the cascade detector, more features are

added to improve the classification performance. However,

using more features means a higher computational cost. For

this reason, for the training stage it is necessary to find a

trade off between computational cost and detection rates. The

optimal solution for a SLAM problem would be to detect all

existing objects in the scene, therefore a detection rate of a

100% would certainly be optimal. However, forcing the sys-

tem to detect as many real objects as possible, will introduce

false detections. For SLAM algorithm to work properly, this

false positive rate must be minimum, because detecting a

false object could produce a wrong data association and its

consequent inconsistencies in the map and the localization. In

Fig. 9. Schematic depiction of a the detection cascade.

addition, on-line SLAM solutions demand for fast detectors,

therefore only a few features should be used.

From all these requirements, the main constrains to be

met during training process are summarized in Table I. As

mentioned in Table I, each layer tries to keep high detection

rate while maintaining low false positive rates. In order to

achieve this objective, it is necessary to add more features to

obtain a stronger classifier. Detection rates are determined by

testing the current detector on a validation set. If the overall

target false positive rate is not met then another layer is added

to the cascade.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted on a real environment

dataset. This dataset was acquired with a REMUS-100 AUV

(see Fig. 10). The vehicle was equipped with DVL and IMU,

providing navigation data relative to the vehicle’s reference

frame, for instance, velocities, orientations and depth. The

AUV was send underwater to perform a recognition mission
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TABLE I

TRAINING CONSTRAINTS

Cascade layer 1 2 3 4 ...

Detection rate 99.9% 99.7% 99.6% 99.5% ...
False positive rate 50% 20% 10% 5% ...
Number of features 1 2 6 11 ...

Cascade layer ... 5 6 7

Detection rate ... 99.5% 99.3% 99%
False positive rate ... 1% 0.5% 0.05%
Number of features ... 20 30 30

Fig. 10. The REMUS-100 AUV was used to gather the dataset on the
experiments.

(see Fig. 11 for the vehicle trajectory estimated through

Long-Baseline sensing (LBL)). During the mission the ve-

hicle navigated a large surface, about 300m x 400m. The

whole navigation consisted in a large number of loops, i.e.

revisiting the same area several times.

The sea floor was populated with objects, rocks and other

salient features. The vehicle was carrying a side-scan sonar

pointing both ways, starboard and port (see Fig. 12). This

side-scan sonar acquired high resolution acoustic images.

The cascade of classifiers trained with the features proposed

in this paper was the one in charge of detecting the objects,

rocks and other salient features. These features’ state is

defined as a 3D point in the map. These points are the ones

used as inputs for the feature based Selective Submap Joining

SLAM, together with DVL and IMU readings (see Fig. 13

for an schematic representation of the whole process).

For the training stage we used a data set of side-scan sonar

image patches, some of them containing an object (positive
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Fig. 11. Estimated trajectory of the vehicle from LBL.

Fig. 12. Side-scan sonar working principle.

set) and the rest without any object (negative set). According

to the behaviour of the classifier, it is recommended to use

twice the amount of negative samples than positive ones. In

our case, we used 2000 positive objects and 5000 negative

objects. Initially the dataset was much smaller, but the perfor-

mance of the system was not satisfactory. The cascade only

improved the false positive rate until a certain layer, there

was no further improvement, not even increasing the number

of features. For this reason, it was necessary to generate

more training images from the original ones, by changing

their scale, their intensity and adding noise synthetically.

This augmented dataset produced better results. In addition,

during the training stage those false object detections, that

were significantly affecting the cascade, were removed from

the dataset, changing and improving the cascade structure.

Notice that a different set of side-scan sonar images was

used to test the performance of the proposed approach, giving

the results in Table II. These results show that the obtained

cascade is useful at least until its fourth layer, because further

layers suffer ans increase in the false negative rate. Until

this layer, there is a chance of detecting a false object every

hundred observations, which could be a real issue for SLAM.

However, the Joint Compatibility Branch and Bound does not

take into account spurious observations.

TABLE II

CASCADE PERFORMANCE

Cascade layer 1 2 3 4 ...

Detection rate 99.5% 99.3% 99.2% 99% ...
False positive rate 53% 6% 1% – ...
Number of features 1 2 4 – ...

Fig. 13. Block diagram of the system.
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Fig. 14. 3D plot of the map (coloured dots) and the trajectory of the
vehicle (black line).

The training stage was very expensive in terms of compu-

tational demand, but the detection was very fast. This allowed

to check its performance on-line with the SLAM algorithm,

providing the qualitative result shown in Fig. 14.

V. DISCUSSION AND FUTURE WORK

In this paper we presented an approach to detect robust

features. We conduct a selection of features that improved

the detection of objects in side-scan sonar images. The

method uses the distance to the centroid and an accurate

selection of Haar-like features. This object detection strategy

is used to segment objects located on the sea floor observed

through side-scan sonar. These objects are then used as

observations for a feature based Selective Submap Joining

SLAM algorithm. After seeing the results, we can conclude

that both the detector and the SLAM algorithm perform

satisfactorily. The detector is shown to be fast and provides a

high detection rate. After a highly expensive off-line training

stage, the detector can perform on-line with the SLAM

algorithm, producing large maps consistently and localizing

the vehicle within it accurately.

As future work we plan to test the whole system in a real

scenario by implementing our approach on the REMUS-100

AUV.
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Abstract— This paper proposes a way to solve a highly
precise docking problem for a flexible delivery in production
environments. The docking problem is seen as one of the
fundamental problems to enable more flexible automation using
mobile robots. A non-holonomic differential-driven robot with
two conveyor belts is used to deliver boxes with goods to two
docking slots on an assembly belt and unload them precisely. In
order to localize the robot in front of the docking slots, a safety
LIDAR and two “minimal invasive” reflecting markers are used
that are completely light invariant, thus reaching industrial
robustness. This measurement is fused with odometry using
a Kalman filter and a distance weighted way to compute the
reliability of the data streams.

I. INTRODUCTION

Many industrial facilities already have employed exhaus-
tive methods optimizing productivity in their production
labs and construction assemblies [1], [2], [3]. In contrast
to traditional optimization methods, the potential of mobile
service robotics can be seen as a next revolution with respect
to further optimization potentials [4]. This is especially true
in conjunction with the increasing demand for flexibility in
product and supply management, environmental changes or
highly dynamical production flows [5]. As the mobile service
robotics can be one solution for further optimizations, the
overall performance and robustness is still improvable in real
life applications although impressive work was for example
done in [6], [7].

A mobile robot requires robust basic capabilities like self-
localization, navigation, and closed loop control in order
to fulfill given mobility tasks. Besides the overall robust-
ness and reliability of these functionalities, non-functional
requirements must also be met for serious industrial usage
including smoothness of actuator control, speed, and energy
optimizations efficiency, and a safe and predictable behavior
of the mobile robot. Fundamental constraints are typically
given by choosing a mobile platform of holonomic or non-
holonomic type, each with its own advantages and disadvan-
tages.

In this paper, we propose a methodology for solving a
highly precise docking problem. The docking problem is
one of the fundamental problems such as the handover
of goods or the battery charing [8], [9], [10], [11], [12].
Approaches for the docking problem typically use optical,
IR [13], or electromagnetic [14], [15] markers. Opposite to
the docking in charging positions, the presented application
example in this paper requires highly precise approaching.
Here, two conveyor belts mounted on a mobile robot are

(a) (b)

Fig. 1. (a) The differential-driven platform used in this work. It is equipped
with a LIDAR, several cameras and two conveyor belts to load, carry, and
unload boxes on assembly line docking station as depicted in (b).

used to deliver boxes with goods to two docking slots on an
assembly belt. These boxes need to be precisely pushed from
the robot in order to glide into to the docking slot. Using
a non-holonomic differential-driven platform, this approach
needs to be precomputed exactly and the corresponding path-
following needs to be precise as well.

In order to localize the robot in front of the docking slots,
we make use of the already installed safety LIDAR and two
reflecting markers. This way, almost no invasive markers
need to be added and the results are completely light invari-
ant, thus reaching industrial robustness. This measurement
is fused with odometry using a Kalman filter [16] and a
distance weighted way to compute the reliability of the data
streams.

The paper is organized as follows: Sect. II introduces the
differential kinematics of the mobile robot, Sect. III describes
how a given path can be smoothly followed with such a
kinematic, Sect. IV explains the localization and the fusion
method in detail and overviews the results.

II. DIFFERENTIAL-DRIVEN MOBILE PLATFORM

A differential-driven robot—such as the one depicted in
Fig. 1—is controlled via two independently actuated wheels
on a common axis that have a distance of 2b from each other.
The robot can move with the linear velocity u and the angular
velocity ω along the body axes (Fig. 2). With the assumption
that the wheels are perfectly rolling, the kinematic model of
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such a robot can be expressed as:

u = 1
2 (vr + vl) (1)

ω = 1
2b (vr − vl) , (2)

where the maximal velocities of the wheels are bound to
certain limit values Vm, e.g., due to hardware limits of the
motors.

Without any other limitation, such a robot can drive on
paths with arbitrary curvatures

κ = 1
b

vr − vl
vr + vl

. (3)

The curvature κ of a planar path is related to the radius rc
of a circle that most closely approximates the path at a given
point (P ):

κ =
1

rc(P )
. (4)

This means, that for counter-rotating motors, the curvature
becomes infinite and the robot turns on the spot.

While the robot is driving on the ground plane in a
two-dimensional space (x and y), the curvature κ is one-
dimensional. Therefore, for arbitrary plane paths that can be
expressed parametrically by (x(t), y(t)), the signed curvature
is given by

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2
. (5)

This equation can be reduced to

κ =
ÿ

(1 + ẏ2)
3
2

(6)

=
f ′′(x)

(1 + f ′(x)2)
3
2
, (7)

under the assumption ẋ = 1 and ẍ = 0.
The curvature [17] is the central parameter of robotic

motion when considering maximization of linear velocity and
minimization of snatchyness. However, a smooth behavior
of a mobile robot without hard brakes is desirable due to
multiple issues: From an energy efficiency point of view,
hard brakes should be avoided. Additionally, smooth—and
therefore predictable—behavior of the robot increases safety,
as humans can estimate the trajectory and act accordingly.

u

vl

vr

ω
2b

Fig. 2. Differential-driven platforms with a wheelbase of 2b are controlled
by the turning velocities vl and vr of the wheels, resulting in a linear
velocity u and an angular velocity ω

Hence, if we want to apply this strategy, the motor
velocities should always remain positive

vl, vr ∈ [ 0, Vm] , (8)

and the curvature of the reference path needs to stay
bounded [18] to

κ =
[
−1
b
,
1
b

]
. (9)

III. PATH FOLLOWING

If we constrain κ, we will get a smoother path trajec-
tory l ∈ Rp, that can be followed if the robot controller takes
special care of a) the distance between the robot and the path
and b) the angle between the forward velocity vector and the
tangent to the path. Both should be reduced to zero [19] to
follow the path.

Following [20], the path following problem can be ex-
plained in more detail: Let P = (xP , yP ) be an arbitrary
point on the path l and Q = (xQ, yQ) be the center of mass1

of the differential-driven robot. Along the path, a tangential
reference frame {F} is attached at every point with a signed
curvilinear abscissa denoted with s. This tangential reference
system can be referred to as Serret-Frenet frame. Thus, the
position of the robot Q can be described in the inertial
reference frame {I} as

qI =
[
xQ yQ 0

]T
(10)

and in {F} as

qF = r (11)

=
[
s1Q y1Q 0

]T
. (12)

Equivalently, P is given in {I} as

pI =
[
xP yP 0

]T
(13)

and in {F} always as

pF =
[
0 0 0

]T
. (14)

The rotation from {I} to {F} is given by RI,F = R(θc),
parametrized by the angle θc between the inertial frame
{I} and the curvilinear abscissa s. The reverse rotation is
respectively given by RF,I = R−1(θc).

The angular velocity is defined by

ωc = θ̇c (15)
= κr(s)ṡ , (16)

with κr(s) being the curvature of the reference path.
Using these definitions, the velocities of both points Q

and P can be easily expressed in both systems.

ṗF = RI,F ṗI (17)

=
[
ṡ 0 0

]T
(18)

The velocity of point Q in {I} is given by

q̇I =
[
ẋQ ẏQ 0

]T
(19)

= ṗI + RF,I ṙ + RF,I (ωc × r) , (20)

with r being the vector from P to Q.
1for the F5 this is also the center of rotation
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Fig. 3. The mobile robot should follow a given path l. Its position is
expressed in an interial frame I and a Frenet frame F rooted in the tangent
space of the path. If the angle Θm and the distance between robot and path
are reduced to zero, the robot moves on the given path

Now, the velocity of Q in {I} can be expressed in {F}
by multiplying both sides with RI,F

q̇F = RI,F q̇I

= ṗF + ṙ + (ωc × r) , (21)

with ṙ =
[
ṡ1Q ẏ1Q 0

]T
.

Considering the relation

ωc × r =

 0
0

κr(s)ṡ

×
s1Qy1Q

0

 (22)

=

−κr(s)ṡ y1Qκr(s)ṡ s1Q
0

 , (23)

equation (21) can be expressed as

q̇F =

ṡ (1− κr(s) y1Q) + s1Q
y1Q + κr(s)ṡ1Q

0

 (24)

and be solved for

ṡ1Q =
[
cos θc sin θc

] [ẋQ
ẏQ

]
− ṡ (1− κr(s) y1Q) (25)

ẏ1Q =
[
− sin θc cos θc

] [ẋQ
ẏQ

]
− κr(s)ṡ s1Q . (26)

Applying the body-axis speed u (linear velocity), the yaw
angle of the vehicle θm, and the respective angular veloc-
ity ω = ωm = θ̇mtogether with the relationship[

ẋQ
ẏQ

]
= u

[
cos θm
sin θm

]
(27)

and the mathematical rules for θ = θm − θc

cos θ = cos θm cos θc + sin θm sin θc (28)
sin θ = sin θm cos θc + cos θm sin θc , (29)

the kinematic model of the unicycle robot can be expressed
in {F} as

ṡ1Q = −ṡ (1− κr(s) y1Q) + u cos θ (30)
ẏ1Q = −κr(s)ṡ s1Q + u sin θ (31)

θ̇ = ωm − κr(s)ṡ . (32)

Recalling the problem formulation stated previously, a
given path is followed exactly if s1Q, y1Q, and θ are zero.
On the kinematic level, a locally positive-definite Lyapunov
candidate function such as

V1 = 1
2 (s21Q + y2

1Q) + 1
γ (θ − δ(y1Q, u))2 (33)

can be applied [19] to proof the stability of the system, where
it is assumed that
• limt→∞ u(t) 6= 0
• δ(0, u) = 0
• y1Q u sin δ(y1Q, u) ≤ 0,∀y ∀u .

By choosing

θ̇ = δ̇ − γ y1Q u
sin θ − sin δ

θ − δ
− k2(θ − δ) (34)

ṡ = u cos θ + k1 s1Q , (35)

with k1 > 0 and k2 > 0 being non-negative constants, the
time derivative follows

V̇1 = −k1 s
2
1Q − 1

γ (θ − δ)2 + y1Q u sin δ ≤ 0 (36)

and guarantees that all state variables remain bounded [20].
The function δ has the purpose of shaping the transient
convergence of the state to zero and can be chosen according
to specific design demands.

Now, (1), (2), (32), and (35) can be merged together,
resulting in

vr = u+ b (κr ṡ+ θ̇) (37)

vl = u− b (κr ṡ+ θ̇) . (38)

A further combination of these equations with (3) results
in the closed loop curvature of the robot

κcl =
κr ṡ+ θ̇

u
, (39)

for which can be shown [18] that

lim
t→∞

κcl = κr (40)

if the path-following error tends to zero. Please refer to Fig. 4
for an example where the closed loop curvature converges
to the reference curvature as the robot follows the path.

Keeping this in mind, the proposed strategy for keeping
the robot on a given path becomes

u =

{
1
2Vm , if V1 ≥ ε

1
1+b |κr(s)|Vm , if V1 < ε

(41)
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Fig. 4. Example path where the closed loop curvature converges to the
reference curvature as the robot follows the path

for the linear velocity with ε > 0 being a threshold value
regulating the path following error and

ω = θ̇ + κr(s)ṡ (42)

for the angular velocity.

IV. DOCKING PROBLEM

To follow a given path, it is necessary to localize the
robot and to keep track of its position to minimize the path-
following error. We make use of the safety LIDAR that
is already attached to the robot and detect two reflecting
markers (left and right) in the polar coordinate frame of the
LIDAR: P pol

L = (rL, θL), and P pol
R = (rR, θR). Please refer

to Fig. 5 for a schematic view. These two points are projected
to the Cartesian coordinate frame of the robot:

PL = (rL cos θL, rL sin θL) (43)
PR = (rR cos θR, rR sin θR) . (44)

With these points, we can compute

β = cos−1

(
|PM − PR|2 + |PM |2 − |PR|2

2 |PM − PR| |PM |

)
, (45)

which can directly be used to express the angular position
of the robot

α = tan−1

(
PL,x − PR,x
PL,y − PR,y

)
. (46)

The point between these two points in the middle of the
docking slot

PM = 1
2 (PL + PR) (47)

is the center of the coordinate frame in which we want to
estimate the robot’s position. If we use this as center for
a polar coordinate frame, we can interpret β as the angle
and dm = |PM | as the length. This can also be transformed
to a Cartesian coordinate frame which results in

Probot = (dm cosβ, dm sinβ) . (48)

Hence, the final result of the measurement is given by

p̂l = (Probot,x, Probot,y, α)T (49)

= (x̂l, ŷl, α̂l)T . (50)

Additionally, the odometry data is initialized with the first
measurement of the LIDAR and then propagated (p̂o =
(x̂o, ŷo, α̂o)T) using the wheel-diameter and the kinematic
model.

Because the measuring directly returns the position and
orientation of the robot with respect to the goal position, we
can work in this space and comply with the linearity and
Gaussian requirements of a Kalman filter [21]. The robot
dynamics and the measurement model are given by

xt = (x, y, α, ẋ, ẏ, α̇)T (51)
= Ftxt−1 + Btwt (52)

and

zt = (x̂l, ŷl, α̂l, x̂o, ŷo, α̂o)T (53)
= Htxt + Ctvt . (54)

wt and vt are zero-mean, white Gaussian noise variables,
with covariance matrices Wt,Vt respectively. We are us-
ing a constant velocity model with white noise accelera-
tion (WNA)

Ft =
[
I3×3 I3×3δt

0 I3×3

]
, Bt =

[
1
2B0δt

2

B0δt

]
(55)

and

Ht =
[
I3×3

I3×3

]
(56)

for the measurement Jacobian.

x

y

α

dL

dR

α
PL

PM

PR

dM

β

Fig. 5. Schematic view to geometrically solve the position and angle of
the mobile robot using a LIDAR and two markers
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Fig. 6. Docking of the robot to the right assembly line position. The
purple line is the fusion of the odometry data (green) and the LIDAR
measurements (blue)
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Fig. 7. Docking of the robot to the left assembly line position. The
purple line is the fusion of the odometry data (green) and the LIDAR
measurements (blue)

The overall noise covariance matrices

Qt = BtWtB
T
t (57)

Rt = CtVtC
T
t , (58)

with R being a diagonal matrix, realize the optimal Bayesian
predictor-corrector scheme by

x−t = Ftxt−1 (59)

P−t = FtPt−1F
T
t + Qt (60)

and

xt = x−t + Kt

(
zt −Htx

−
t

)
(61)

Pt = (I −KtHt) P−t , (62)

with the Kalman gain

Kt = P−t HT
t

(
HtP

−
t HT

t + Rt

)−1
. (63)

The two modalities used (LIDAR and odometry) show
different behaviors with respect to the distance to the goal:

the odometry delivers smooth results, but if the initialization
or the initial localization was not done properly, the error
will be accumulated with the inherent drift in odometry data
leading to an incorrect behavior. Opposite to that, the LIDAR
localization method measures with a lot of noise, which
reduces as the robot approaches the goal. Therefore, we use
the noise covariance matrix to control the trust in the two
signals by integrating the distance related variable dt in order
to update the matrix

Rt(dt) = diag



1

((1−a)+a (dmax− dt
dmax

)) rl

1

((1−a)+a (dmax− dt
dmax

)) rl

1

((1−a)+a (dmax− dt
dmax

)) rl

1

((1−b)+b dt
dmax

) ro

1

((1−b)+b dt
dmax

) ro

1

((1−b)+b dt
dmax

) ro


, if dt < dmax

(64)
in each time step, with rl and ro being the initial inverse
covariance values, a and b being splitting factor to guarantee
a constant base value, and dmax representing the threshold
when to apply the distance weighting of the matrix. If dt >
dmax, the initial values rl and ro are applied.

As it can be seen in Fig. 6 and Fig. 7, the proposed method
was was successfully applied in order to perform a docking
maneuver. From an initial position in about 1 6m from the
actual goal position, the robot was approaching to the two
delivery positions of the docking station via a computed
fourth-order polynomial trajectory. The robot is moving from
right to left. With a predominance on the smooth odometry
data in the beginning, the more and more accurate LIDAR
measurement gets integrated. Throughout the approach, the
planned path is being followed by the robot. Screenshots
from the docking maneuver are depicted in Fig. 8.

V. CONCLUSIONS

In this paper, we have shown a way to precisely dock to an
assembly line with a non-holonomic differential-driven mo-
bile platform. The platform was equipped with two conveyor
belts in order to carry boxes and unload them to a docking
slot on an assembly line. To drive smoothly, the motion space
was constraint to only positive motor velocities. The path to
approach the goal position was computed using a fourth-
order polynomial equation and followed using Frenet frame
representations. To localize the robot, the safety LIDAR was
used to detect two reflecting markers. This measurement was
fused with a Kalman filter to determine the current position
of the robot, that was used to control the robot on the path.
The two modalities from odometry and the LIDAR were
fused using a distance weighted way in order to compute
the overall measurement noise covariance matrix that was
used to compute the Kalman gain. The results in Sect. IV
showed that a precise docking was possible and the loading
and unloading could be performed successfully.
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Fig. 8. Application scenario – The mobile platform F5 is approaching a docking station and delivers two boxes with high precision
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Abstract— In this paper, we address the problem of recognizing
multiple known objects under partial views and occlusion. We
consider the situation in which the view of the camera can be
controlled in the sense of an active perception planning problem.
One common approach consists of formulating such active object
recognition in terms of information theory, namely to select
actions that maximize the expected value of the observation in
terms of the recognition belief. Instead in our work we formulate
the active perception planning as a Partially Observable Markov
Decision Process (POMDP) with reward solely associated with
minimization of the recognition time. The returned policy should
be the same as the one obtained using the information value.
By recognizing observations as a time consuming process and
imposing constrains on time, we minimize the number of obser-
vations and consequently maximize the value of each one for the
recognition task. Separating the reward from the belief in the
POMDP enables solving the planning problem offline and the
recognition process itself becomes less computational intensive.
In a focused simulation example we illustrate that the policy is
optimal in the sense that it performs the minimum number of
actions and observation required to achieve recognition.

I. I NTRODUCTION

Object recognition is still an open problem. From the choice
of features to the actual classification problem, we are still
far from a global recipe that would allow for a complete
discriminative approach to recognition. The large majority of
object recognition community is focused on offline, database
driven tasks. State of the art is measured with respect to
performance in datasets gathered from web images such as the
Pascal challenge datasets. Two problems arise from the use of
such datasets. The first is the large variability of images. The
second is the incapacity to look at the scenes in images from
different poses, which would provide not only different, and
probably more discriminative, views of objects as would help
to segment objects from the background.

In the context of a robot moving in a constrained environ-
ment, the object variability is no longer present. The chairs in
an office building are all very similar to each other and will
be the same for long periods of time. For a robot moving in
such a building, the model for a chair can be much simpler
and efficient than a model built from web datasets. So, in this

project, we assume that recognition can be feasible in such an
environment.

However, in spite of having highly accurate models of each
object in a room, the robot may not be able to completely
distinguish between two different objects. Both self-occlusion
and occlusion caused by other objects may cover the distinc-
tive parts of an object, making the robot inable to distinguish
between two object classes: the object classes are ambiguous
given the occlusion. This ambiguity appears, for example,
between a computer screen and a card box. Although they may
look the same when the robot is directly in front of them, if
the robot looks to the side of the screen it should be able to
correctly differentiate the screen from the card box. Since the
robot will never have access to all the views of the object at a
given time instant, the type of ambiguity described arises even
when the robot performs 3D object recognition. The robot only
has access to partial information on the object until it decides
to move with relation to the object.

We assume that most of the ambiguity in object recognition
can be removed by having the robot looking to objects through
different angles. I.e., we assume that, in spite the ambiguity
between object A and object B, there is always an angle in A
or B from which the objects can be disambiguated.

There is a vast literature on active perception and the
reader may find a detailed overview of the field with special
focus on multi-view object recognition at Chen et. al. [1].
In recent years, the main contributions to the field concern
the action decision algorithm. In the early 2000’, approaches
(e.g. [2], [3]) focused on information theory arguments to
make decisions. The next viewpoint in a task was selected
in order to minimize an entropy function, i.e., to minimize
the uncertainty in the state. The cost of the whole plan in
terms of time and energy is neglected. In a recent work of R.
Eidenberger and J. Scharinger, [4], an action control cost is
added to the value of information reward. In the present work,
we consider the problem solely as the minimization of time
to recognition. Since time is spent in both image processing
and movement actions, by minimizing time we guarantee that
the viewpoints selected for image processing are the most
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informative.

To minimize the number of movement actions and the time
spent in image processing we formalize our problem as a
Partially Observable Markov Decision Process, POMDP. The
partial observability arises from the incapacity of the robot to
see the whole object from the same viewpoint.

The formalization of active object recognition as a POMDP
is also present in some recent works. In particular we refer to
[4]. However, in their work, POMDP rewards are linked to the
expected minimization of information entropy from the next
observation. In practice, the reward of future actions needs
to be computed online, since it depends on the entropy of
the current state. The dependency of rewards on the current
state means that the robot has to solve a POMDP after each
observation, which is a very costly process. In our approach,
we assign negative rewards to all time consuming actions and
all the rewards are defined a priori. This enable us to solve
the POMDP problem off-line and use the policy online.

Another important feature of the current work is that we
only try to recognize one object at a time. In our formulation
of the POMDP problem, states are linked to object orientation
with respect to the robot. By separating the object recognition
problem into individual objects, we ensure that all possible
states are known a priori, which is essential for solving the
POMDP offline. In their work, [4], the authors aim at having
the robot identifying several objects at the same time. This
means that the state space is not initially known and hence
the POMDP solution cannot be determined beforehand.

Contrarily to what can be found in the literature and without
loss of generality, we define our state as the orientation
between the robot and the object and neglect the relative
distance between the two. It is assumed that the robot is able
to control its distance to the object or that this distance will not
pose a problem to recognition. The assumption is valid since
we could use distance invariant features for object recognition,
or we could just expand the number of states in our problem
to accommodate relative distances between the robot and the
object.

The main contribution of this work is how we represent the
active object recognition as a POMDP problem. Our objective
is to minimize the overall time spent by the robot in the
object recognition task. As such, we want to minimize not
only the time spent on movement and image processing, but
also the time spent on planning. Solving a POMDP is still
computationally expensive and we do not wish to solve it
online. By defining all the problem offline we only need to
solve the POMDP once and thus gain access to a policy which
can be used online in a time efficient fashion.

This paper is organized as follows: In Section II, we
present the approach overview. In Section III we formalize
our problem as a POMDP, in Section IV we present our
experiments and results and in Section V we draw conclusions
and present future work.

II. A PPROACHOVERVIEW

In our object model, instead of associating one object to
each state and constructing a 3D model for the object, we con-
sider all the possible orientations of the object with relation to
the robot. Each orientation for each object is a state in our plan.
For each state we can retrieve an observation. For example, let
N = {n1, ..., nN} be a set of N objects, each with M possible
orientations. The total number of states related to objects
will be S = {s1,1, s1,2, ..., s1,M , ..., sN,1, ..., sN,M}. To these
states we may have observationsO = {o1, o2, ..., oO}, where
O < N × M . Due to ambiguity in states with relation to
observations, there is not a direct relation between observa-
tions and states, i.e., observations provide us with only partial
information with respect to the object and its orientation. The
3D structure of the object is coded by the state transitions when
the robot moves. If the robot decides to rotate left from state
sni,m it will end up in statesni,m+1. To each of these states
there is an associated observationoni,m and oni,m+1 which
may be the same. The object structure is thus represented by
the fact that for the objectni we can have access to observation
oni,m+1 if we rotate left after observingoni,m. One example
is provided in Figure 1. In this figure we have one object,
a cube, and we are only considering 4 possible orientations,
which give rise to 4 possible states. From each of the states
we there is a single possible image which can be retrieved.
However the same image can correspond to more than one
orientation. The 3D shape of the object constrains the order
of images that the robot can obtain when it rotates.

The correct identification of the object is then mapped to
the identification of at least one of its possible orientations.
The robot is able to identify the objectni ∈ N if it is able
to do one of the following: (i) identify one of the object M
statessni,m; (ii) have uncertainty over a set of states, all
belonging to the same object. In other words, the robot will
do a correct identification of the objectni if and only if its
belief distribution respectsbj,k = 0,∀j 6= ni.

III. POMDP FORMULATION

We formulate our POMDP as a tuple (S,A, O, T , Ω, R, b0),
where:

S is the set of states;
A is the set of actions;
O is the set of observations;
T is the set of conditional transition probabilities;
Ω is the set of conditional observations probabilities;
R is the set of rewards;
b0 is the initial belief.

States
States are the object orientations with respect to the robot. If
we consider that those orientations are spaced with angles of
∆θ, we haveM = 2π/∆θ per object. For a set of N objects,
the total number of states would beN ×M . Furthermore, we
have an extra state, theSink, where the robot enters after an
attempt to identify the object. In the case of our example in 1
our object is a cube and thus we need∆θ = π/2 which lead
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Fig. 1. Example of how one object is defined. A state corresponds toan orientation of the object with relation to the robot. We move states by applying
movement actions such as rotate left. At any given state the robot may choose to do an observation. In the example, an observation corresponds to the
construction of a color histogram.

to 4 states per object. For two cubes we have2 × 4 + 1 = 9
states:S = {s11, s12, s13, s14, s21, s22, s23, s24, Sink}
where, e.g,s11 corresponds to an orientation ofθ = 0 of the
object 1 with relation to the robot ands24 corresponds to an
orientation of3π/2 of object 2 with relation to the robot.

The advantage of this representation is that it enable us
to make a direct connection between states, orientations, and
movement actions.

Actions
Actions can be divided in three groups:Movement,Observa-
tion and Identification. We assume that the robot is moving
at a constant distance from the object and the onlyMovement
actions we need are rotate left or rotate right. Both actions
correspond to a rotation of∆/θ, one clockwise and the other
counter clockwise. TheObservationaction involves processing
a 2d image of the object taken by the robot at its current
orientation. Identification actions correspond to the act of
attempting to identify the object. The identification of an

object is equivalent to the identification of one of the states
corresponding to the object. In the previous example of two
cubes, the correct identification of the object 1 corresponds to
the identification of at least one of the statess11, s12, s13, s14.

The set of actions is thus defined as:

A = {rotateLeft;

rotateRight;

observe;

identify1;

identify2;

...;

identifyN},

where N is the total number of objects being considered.
Observations

Observations are the result of processing one image from
the object at the current orientation. They form a discrete
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set, since we are only observing the object from a finite set
of orientations. We assume that the observations from each
orientation are all known a priori. In this context, processing
one image refers to features retrieval and image matching and
theobservationaction becomes a classification process, where
the features of the new image are compared with the a priori
expected features for each state.

If the features chosen were good enough to completely
define the object, all states would be connected to an unique
observation and our problem would be reduced to a Markov
Decision Process. However, this is rarely the case and com-
monly the features and the matching algorithm are not discrim-
inative enough. If we cannot discriminate two or more states at
all, we assign them the same observation. If we just do not trust
enough in the classification, we consider the observations as
different, but assign them lower probabilities in the observation
table.

For the POMDP formulation, the observations are a set
O = { o1, o2 , ... , oO}, whereO < N ×M . The type of
features and matching algorithms used are not relevant from
the POMDP point. What matters is the classification output
and all the computer vision algorithm can be treated as a
black box. In Section IV-C, we will show how, for the specific
example of this paper, we process the image from acquisition
to an observation probability.

Transitions
MovementActions:
The action rotateLeft corresponds to a rotation of∆θ and
as such shifts between states of the cube in an ascend-
ing order: if we start with an orientation ofθ = 0 and
rotate left we end up with an orientation ofθ = ∆θ.
In terms of states for the object 1, this is equivalent to
move from the states11 to the states12. Formally, we can
write: T (si′,j′ |rotateLeft, si,j) = δi,i′δj,(j′+1)%M for all
statessi,j except Sink and whereδi,j is the Kronecker’s
delta, M is the number of possible orientations and%M
is the operator modulo of M. There is no movement ac-
tion which directs the robot to the sink state and thus:
T (Sink|rotateLeft, si,j) = 0.

Following the previous example, we can also write:
T (si′,j′ |rotateRight, si,j) = δi,iδj,(j′−1)%M and for the
Sink: T (Sink|rotateRight, si,j) = 0

All movement action in the Sink do not change
state. Formally: T (s|rotateLeft, Sink) = δs,Sink and
T (s|rotateLeft, Sink) = δs,Sink.

ObserveAction:
Captures and processes an image. It affects the belief, but the
state remains the same.T (s|observe, si,j) = δs,si,j

IdentificationActions:
The identification action corresponds to an announcement
of the object identity. There is an identification action per
object class and all lead the robot to theSink state.
T (s′|identifyi′ , s) = δs,Sink, ∀s ∈ S.

Observations Probabilities
For each state there is only one possible observation,

but the same observation can be retrieved from more than

one state. Formally we can write:Ω(ok|observation, si,j) =
1 if the observationk corresponds to the statesi,j and
Ω(ok|observation, si,j) = 0 if not.

Reward
The robot receives reward when it identifies an object cor-
rectly. The identification of the object corresponds to the
identification of at least one of its corresponding states. This
is encoded in the rewards the robot receives. In the example of
two cubes with 4 orientations per object and 1 identify action
per object, we have the rewards:reward(identifyi, si′,j′) =
300 × δi,i′ − 500(1 − δi,i′). If the robot chooses the action
identifyi at any state corresponding to the objecti, it will
receive the reward 300. If the action is chosen in any other
state, it will receive a negative reward of 500.

Furthermore, we want to minimize the number of moves and
observations that the robot does, so per each of these actions
we will also add a negative reward.reward(rotateLeft) =
reward(rotateRight) = −10. The observations will be a
little less expensive:reward(observe) = −2. The difference
in reward is explained by the extra energy consumption.

Solving POMDP’s
Policies were learned using Perseus algorithm [5]. This al-
gorithm is a variation of point based methods and is freely
available at the authors website.

IV. EXPERIMENTS

Our experiments are performed using simulations in Matlab.
In the following we describe those simulations, the type of
objects and the classification performed during theobserve
action. At the end of the section we present our results
and highlight the fact that algorithm always chooses the
observations which enable state desambiguation.

A. Simulation

The world simulation is done using the Matlab Simulink
Virtual Reality toolbox. Object orientation and image acquisi-
tion and processing are controlled by a Matlab script.

There is a perfect match between states, observations and
actions between the simulator and the POMDP formulation.
The same actions in the same starting states in both worlds
lead to the same final states. Also, the relation between states
and observations follows the same probability distribution.

B. Objects

Objects are represented by 3D cubes. With the cubes, we
can represent objects variability by the colors of the faces.
Different object perspectives, are represented by faces with
different colors. Similar perspectives that cannot be correctly
distinguished are represented by faces with the same color.

The representation of objects as cubes, albeit simple, il-
lustrates the main characteristics of an active vision system.
If we assume the robot can only move by factors ofπ/2,
we do not need a more complicated object. All the objects
when looked from these directions only present 4 different
observations. The number of possible angles from which the
robot can look at the object is linearly connected to the
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number of faces of the object model we need to consider
and consequently to the number of states per object and
corresponding observations. If we want to look at the object
in intervals of ∆θ = π/3, we would need2π/∆θ = 6
different observations and consequently we would need an
object with hexagonal symmetry with relation to the rotation
axis. However, this would increase the number of states by
1.5 times. The main consequence of the change would be the
increase in the policy computation time.

The cube faces were chosen to highlight the fact that
policies obtained minimize the number of observations and the
number of movements. In particular, they show that the policy
resulting from the POMDP forces to robot to move directly
to those sides of the cube which are more informative, in the
sense that observations perfomed from those sides allow to
disambiguate between states. To illustrate the first situation
we use cube 1 and cube 2 from Figure 2 and for the second
case we use cube 1 and cube 3. The policies were constructed
using just pairs of cubes.

C. Observations

Observations correspond to the aquisition of a new image
from the current orientation and its classification as one of the
a priori expected observations.

In the simulated world, we are dealing with controlled
and colored images and the classification process can be
greatly simplified. In these experiments, we used a nearest
neighbourgh classifier based on color histograms. Examples
of such histograms can be found in Figure 1. The histograms
are computed in gray scale. To represent the distance between
2 histograms, we measure the cosine of the angle formed by
those histograms. Two histograms from the same observation
ok ∈ O will have high cosine values (∼1) and 2 histograms
from different observations will have low cosine values.

D. Results

Experiments were performed using the cubes in Figure 2. In
the first experiment we used cube 1 and cube 2. The two cubes
yield different observations from orientation 1 and 2, but in
orientations 3 and 4 the observations are the same. The robot
should be able to identify correctly the cubes after performing
an observeaction in statess11, s12, s21 and s22. However,
when it is facing the object from orientation 3 or 4, the robot is
not able to identify directly the object. Furthermore, the robot
should have different behaviors in both orientations. While
at orientation 3, the shortest way to identify the objects is
to go to orientation 2 where objects can be desambiguated, in
orientation 4 it should chose to go to orientation 1. The actions
that the robot needs to perform in order to minimize the cost
of identification are different. In the first case it should chose
to rotate right (moving from statess∗,3 to s∗,2) and in the
second case it should chose to rotate left (moving from states
s∗,4 to s∗,1).

In table I, we show the policy chosen by the robot, when
facing each of the orientations of cube 2. Note that the policies
described match what was just described.

(a) View 1 from object 1

(b) View 2 from object 1

(c) View 1 from object 2

(d) View 1 from object 3

Fig. 2. Object views in our experiment. The objects have in total 6 different
faces. The first object has 2 identical faces,o1, plus 2 different ones,o2,
o3. The second object shares two faces with object 1:o1 ando3 and has 2
new faceso4 ando5. The third one is identical to the first, but only one face
changed,o6.

In our second experiment, which is exemplified in table II,
we used the first and the third cube. The two cubes differ
only in one face, but have two identical faces from the point
of view of the observations, i.e., the color histograms retrieved
from orientations 2 and 4 are exactly the same. From the
point of view of recognition, there is one single orientation,
s∗,1, which allows the robot to differentiate the two objects.
From all the other states, the robot will have to rotate with
relation to the object in order to arive at that specific state.
All the observations that it may do in any other state will not
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help him in the recognition task. In the example in table II
this is reflected in the policies presented for the initial states
s∗,1, s∗,2 and s∗,3. We also note that, due to the ambiguity
in observations from states∗,2 and s∗,4 in both cubes if the
robot starts in one of these states the policy will not be optimal
in the sense that it produces more movements than those
stricly required to disambiguate between objects. After the first
observation, the belief state is the same for both statess∗,2 and
s∗,4 and thus the policy will dictate the same action in both
cases. While in one of the cases, this action may lead the robot
directly to the state where it desambiguate the objects,s∗,1, in
the second state, the same action will take him to states∗,3.

Initial State initial Image Policy
s2,1

observe
identify2

s2,2

observe
identify2

s2,3
observe

rotateRight
observe

identify2

s2,4

observe
rotateLeft
observe

identify2

TABLE I

POLICY FOR EXPERIMENT1

V. CONCLUSIONS AND FUTURE WORK

In this work we showed how to formalize an active object
recognition task as solving an offline POMDP and provided
evidence, through simulation, that the policies obtained per-
formed observations only from the viewpoints which provided
direct disambuguation between states.

The main relevance of our result is that we did not formulate
the problem in terms of the commonly used information
theory. Instead, we formulate the problem solely in terms of
control costs. The policies, obtained by solving our POMDP
problem, still ensure that the robot always chooses the observa-
tions that provide most information. The robot only performs
observations which actually contribute to a decrease on the
uncertainty in the current state.

By formulating the problem uniquelly in terms of control
costs, we can provide the robot with an a priori policy. There
is no need to re-solve the POMDP during run-time and the

Initial State initial Image Policy
s2,1

observe
identify2

s2,2

observe
rotateRight

observe
identify2

s2,3
observe

rotateRight
rotateRight

observe
identify2

s2,4
observe

rotateRight
observe

rotateRight
rotateRight
identify2

TABLE II

POLICY FOR EXPERIMENT2

robot does not incur in the heavy time penality caused by the
extra computational effort.

As future work, it is important to study the impact of adding
multiple objects in the POMDP formulation. Adding more
objects leads to occlusions other than self occlusion which
are more difficult to model offline.
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Multi-Robot Coordinated Decision Making under Mixed Observability
through Decentralized Data Fusion

J. Capitán, L. Merino and A. Ollero

Abstract— Partially Observable Markov Decision Processes
(POMDPs) provide a sound mathematical framework to deal
with robotic planning when tasks outcomes and perception are
uncertain, but their main problem is scalability. This paper
deals with planning in multi-robot teams, where this problem
is even more evident. The paper presents a novel combination
of two methods to cope with this complexity. Mixed observability
can lead to simpler representations of the problem. The basic
idea is to assume that some of the components in the state are
fully observable, and solve the POMDP only on the partially
observable part. For multi-robot teams, the complexity can
be also reduced by using a decentralized approach in which
robots have no knowledge about others’ actions. In this sense,
an implicit coordination will be derived from the sharing of the
beliefs among the robots. The paper illustrates the advantages
of the methods proposed in a multi-robot tracking application.
Simulations and actual experiments are shown.

I. INTRODUCTION

Techniques for planning under uncertainty are being ap-
plied more and more to robotics (see for example [1], [2]). In
all cases, the underlying idea is that the state is only partially
observable, and thus, the planning objective is to find a policy
that indicates which action a robot should take given the
information available (the history of actions and observations
gathered by the robot so far, called the information space) in
order to reach a goal. This paper is concerned with decision
making in applications that consider teams of networked
robots.

Considering probabilistic models and a Markovian envi-
ronment, a belief state can be used to represent the infor-
mation space; in this case, POMDP techniques provide an
elegant way to model the interaction of a robot with its en-
vironment. Based on prior knowledge of the sensor’s model
and the environment dynamics, policies which indicate the
robot how to act given the belief can be computed. These
policies can be extracted by optimizing iteratively a certain
value function over the belief space. However, the main
problem of POMDPs is scalability. The optimal plan has
to be searched on the belief space, which can be very large.
This drawback is even more evident in multi-robot teams, as
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the space of actions and observations increases exponentially
with the number of robots.

Approximate point-based methods to obtain POMDP poli-
cies for large state spaces have been studied ([3], [4], [5]).
They restrict the optimization procedure to a bounded set of
feasible sampled beliefs. Particularly, [4] proposes a point-
based solver called Perseus, where no computation is needed
for all the belief points at every iteration, hence improving
performance. In [6], an extension of Perseus is presented.
It is called Symbolic Perseus and uses Algebraic Decision
Diagrams (ADDs) [7] in order to optimize the operations for
factored POMDPs. Besides, [8] proposes SARSOP, which
maintains a tree-shaped set of reachable beliefs that is
expanded at every iteration using the best policy so far.

Other authors try to cope with the high dimensionality
of the belief space by exploiting the idea that many robotic
systems often have mixed observability, i.e. although the state
is not fully observable, some components might be. Thus, [9]
propose MOMDPs (Mixed Observability Markov Decision
Processes), which separate the fully and partially observable
components, leading to a lower-dimensional representation
of the belief space.

Nevertheless, these techniques face ultimately an scala-
bility problem with the number of robots in a team. A
decentralized (Dec-)POMDP [10] is a suitable model for
multi-agent planning considering decentralized execution.
Basically, in a Dec-POMDP each agent has only access to
local information, and communication is not available. Thus,
the agents reason on all the potential action-observation
histories of the other agents (which cannot be observed) in
order to compute an optimal policy. Despite their decen-
tralized execution, Dec-POMDP policies are computed in
a centralized manner, which is a NEXP-complete problem
[10].

The idea presented in this paper is that communication
and data fusion between the robots can induce a common
Markovian belief signal, which can be used to coordinate
the robots’ local plans, alleviating the mentioned complexity
and scaling with the number of robots. Hence, MOMDPs are
considered for local planning, whereas Decentralized data
fusion (DDF) is used to induce a common belief signal
among the robots and coordinate the plan execution.

The idea is similar to that proposed in [11], [12], where a
distinction between cooperative and coordinated information-
theoretic approaches is made, proposing the latter to control
fleets of robots. In a coordinated approach, the members of
the team have no knowledge about the others’ models or
control actions, but they exchange some information that may
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influence implicitly other members’ subsequent decisions.
Hence, by sharing fused perception information or the impact
of others’ control actions over a certain objective function,
and acting locally, coordinated behavior can be obtained.
However, these approaches consider mainly greedy control
algorithms that try to obtain the next suitable action and do
not reason on long-term goals.

The paper is structured as follows: Sections II and III give
some theoretical background about POMDPs and MOMDPs;
Section IV describes the communication and data fusion pro-
cess to coordinate the robots; Section V details a coordinated
tracking application for multiple robots to illustrate the ideas;
and Sections VI and VII explain the experimental results and
conclusions respectively.

II. POMDP MODEL

Formally, a POMDP is defined by the tuple
〈S,A,Z, T,O,R, h, γ〉. The state space is the finite
set of possible states s ∈ S; the action space, the finite
set of possible actions a ∈ A; and the observation space
consists of the finite set of possible observations z ∈ Z. At
every step, an action is taken, an observation made and a
reward given. Thus, after performing an action a, the state
transition is modeled by the conditional probability function
T (s′, a, s) = p(s′|a, s), and the posterior observation by the
conditional probability function O(z, a, s′) = p(z|a, s′). The
reward obtained at each step is R(s, a), and the objective
is to maximize the total expected reward earned during h
time steps. To ensure that this sum is finite when h → ∞,
rewards are weighted by a discount factor γ ∈ [0, 1).

Given that it is not directly observable, the actual state
cannot be known by the system. Instead, a probability density
function b(s) over the state space is maintained. This is
called the belief state and, due to the Markov assumption,
it can be updated with a Bayesian filter for every action-
observation pair:

b′(s′) = ηO(z, a, s′)
∑
s∈S

T (s′, a, s)b(s) (1)

where η acts as a normalizing constant such that b remains
a probability distribution.

The objective of a POMDP is to find a policy that maps
beliefs to actions in the form π(b) −→ a, so that the
total expected reward is maximized. This expected reward
gathered by following π starting from belief b is called the
value function:

V π(b) = E

[
h∑
t=0

γtr(bt, π(bt))|b0 = b

]
(2)

where r(bt, π(bt)) =
∑
s∈S R(s, π(bt))bt(s). Therefore, the

optimal policy π∗ is the one that maximizes that value
function: π∗(b) = arg max

π
V π(b).

III. MOMDP MODEL

Even for a finite set of |S| states, π is defined over a
(|S| − 1)-dimensional continuous belief space. The key in
MOMDPs is to gain computational efficiency by solving

a number of lower-dimensional POMDPs instead of the
original one. Thus, all operations work on lower-dimensional
belief spaces, which can lead to a relevant improvement in
the performance.

The MOMDP [9] is represented as a factored POMDP
where the state vector is composed of two different parts.
Component x is the fully observable part of the original state
s and y is another vector representing the partially observable
part. Thus, the state is specified by s = (x, y), and the state
space is S = X × Y , where X is the set with all possible
values for x and Y all possible values for y.

Formally, the MOMDP is defined by the tuple
〈X,Y,A,Z, Tx, Ty, O,R, h, γ〉. The components are the
same as in the POMDP case, but the transition function
T is now decomposed into Tx and Ty . Tx(x′, a, x, y) =
p(x′|a, x, y) gives the probability that fully observable state
component has value x′ if the robot takes action a in
state (x, y). Ty(y′, x′, a, x, y) = p(y′|x′, a, x, y) gives the
probability that the partially observable state component has
value y′ if the robot takes action a in state (x, y) and the
fully observable state component has value x′.

In a MOMDP, since it can be observed, there is no need
to maintain a belief over x. Therefore, it can be excluded in
order to just maintain a belief by(y), which is a probability
distribution over y. Any belief b ∈ B on the complete system
state s = (x, y) is then represented as (x, by), where by ∈
By . Furthermore, for each value x of the fully observable
state component, a belief space By(x) = {(x, by)|by ∈ By}
is associated. Here, every By(x) is a subspace in B, and B
is the union of these subspaces B =

⋃
x∈X By(x).

Note that while B has |X||Y | dimensions, each By(x) has
only |Y | dimensions. Therefore, the objective of representing
a high-dimensional space as a union of lower-dimensional
subspaces is achieved. Moreover, when |Y | is small, a re-
markable computational improvement can be reached, since
operations to solve the MOMDP are performed over the
subspaces By(x).

Now, since every belief is represented by (x, by), [9] prove
that the value function can be rewritten as a piece-wise, linear
and convex combination of vectors (α-vectors):

V (x, by) = max
α∈Γy(x)

α · by (3)

where for each x, Γy(x) is a set of α-vectors defined over
By(x). Therefore, the value function is now a collection
of sets of |Y |-dimensional vectors, and the value of the
observable component x determines which Γy(x) is selected.
Then, the maximum over Γy(x) is calculated. Now, since the
vectors have |Y | dimensions instead of |X||Y |, the execution
of the policy is also faster for a MOMDP.

A. Point-Based MOMDP Solvers

Once MOMDPs have been introduced, the question is
how to solve them. Fortunately, with some modifications,
the same point-based algorithms for POMDPs are valid now.
Since the value function consists of a set of α-vectors for
every x ∈ X , the idea is to run an independent value iteration
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for each of them separately. In [9], for instance, the point-
based solver SARSOP for POMDPs is modified in order
to cope with MOMDPs. Here, Symbolic Perseus [6] has
been also extended to cope with mixed observability poli-
cies. The resulting algorithm has been named MO-Symbolic
Perseus and it allows a useful comparison with SARSOP for
MOMDP users. Moreover, recalling that Symbolic Perseus
exploits the factored representation of POMDPs and the
ADD structures in order to optimize the original Perseus,
MO-Symbolic Perseus can be of great interest in certain
domains where the variables are not very coupled.

The two main steps to adapt point-based POMDP solvers
to deal with MOMDPs are the belief update and the backup
operation. In a POMDP, the belief update was determined
by (1). However, since by(y) = b(s) when s = (x, y) in a
MOMDP, the equation can be transformed:

b′y(y′) =ηO(z, a, x′, y′)∑
y∈Y

Ty(y′, x′, a, x, y)Tx(x′, a, x, y)by(y) (4)

When the belief is updated, the values of the observable
states before (x) and after (x′) taking an action are known.
Hence, (4) is particularized for specific values of those
variables.

The other major modification in MOMDP solvers is the
backup operation. Based on all the considerations made for
MOMDPs, [9] show how the backup operation included in
the original Perseus can be rewritten for MOMDPs:

backup(by) = arg max
a∈A

by · αa , where (5)

αa(y) =Rxa + γ
∑
z∈Z

∑
x′∈X

∑
y′∈Y

(Tx(x′, a, x, y)

Ty(y′, x′, a, x, y)O(z, a, x′, y′)αa,x′,z(y′))

(6)

Finally, note that:

αa,x′,z(y′) = arg max
α∈Γy,n−1(x′)

α(y′) · bza,y(y′) (7)

In this case, unlike (4), all the possible x′ must be taken
into account. Even though x′ and z are concrete values, they
cannot be known beforehand like x, so all their values must
be considered and weighted by their probabilities.

Apart from the steps mentioned above, MO-Symbolic
Perseus also needs some modifications when initializing.
First, a different set of beliefs By(x) over the component
y must be sampled for every value of x. In case y is
probabilistically independent of x, the same set of beliefs
over y could be used for every x. Moreover, all the value
functions Γy(x) are initialized separately with the same
values as in the original Symbolic Perseus.

IV. COORDINATION THROUGH DECENTRALIZED DATA
FUSION

Given a multi-robot planning problem, the first option is
to solve the above MOMDP for the whole team, considering
all the potential joint actions and observations, but this
approach ultimately does not scale with the number of robots.

Hence, for a team of N robots, a decentralized scheme
is proposed, where each robot i solves its own MOMDP
without considering the other robots actions. However, if the
robots solve independent MOMDPs, and use only their local
information (action and observations), no coordination or
cooperation is achieved. On the other hand, if communication
is allowed among the robots and the same belief state can
be recovered locally, this would represent a coordination
signal that summarizes all the information gathered by the
fleet. This way, the execution of the policies of the different
robots will be coordinated. The solution should be of lower
quality than a fully cooperative centralized solution, but it
can represent a tradeoff between quality and complexity.

Then, once the policies have been calculated, the coor-
dination is achieved during the execution phase by sharing
a common belief state bcen(y) that considers information
from all the robots. If aJ = 〈a1, · · · , aN 〉 is the joint action
and zJ = 〈z1, · · · , zN 〉 the joint measurement, a centralized
node with access to all the information would update the
belief according to (4):

b′cen(y′) = ηp(zJ |aJ , x′, y′)
∑
y∈Y

p(x′, y′|aJ , x, y)bcen(y)

(8)
The question is how to recover this centralized belief in a
decentralized manner. Assuming that the data gathered by the
different robots at any time instant are conditionally indepen-
dent given the state at that instant s′, i.e. p(zJ |aJ , x′, y′) =∏
i p(z

i|ai, x′, y′), and the prediction does not depend on
the robot actions (or the robot actions are known when
predicting), it is possible to combine locally the received
belief from other robots with the local one of robot i, b′i(y

′),
to recover the centralized belief [13], [14]:

b′cen(y′) ∝ b′i(y′)
∏
j 6=i

b′j(y
′)

b′ij(y
′)

(9)

where b′ij(y
′) represents the common information between

the robots i and j (i.e. information previously exchanged
between the robots). This common information can be main-
tained by a separate filter called channel filter [15]. If there
are loops in the information channels, the problem of double-
counting should be taken into account as well. The authors
have shown previously [14] that it is possible, by including
delayed states in the belief, to obtain locally the same belief
as in a centralized node with access to all the information
available.

V. MOMDP FOR TARGET TRACKING

In order to illustrate the proposed approach, an applica-
tion for tracking a target by means of multiple robots is
considered here. In this problem there is a moving target
and a team of N robots which are the pursuers. Each of
these robots carries a sensor which determines whether the
target is visible or not within its field of view (FOV). Then,
the objective is to find the target in the environment and
localize it as well as possible.
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The state is composed of the position of the target and
the position and heading (north, west, south or east) of the
pursuer robots. The state space is discretized into a cell grid,
and a map of the scenario is assumed to be known. At
each time step, each robot can choose among four possible
actions: stay, turn right, turn left or go forward. stay means
doing nothing; when turning, the robot changes its heading
90o degrees; and when going forward, it moves to the cell
ahead. Nonetheless, noisy transition functions for the states
of the robots are considered. Besides, the target is assumed
to move randomly. Therefore, the transition function for its
position indicates that, from one time step to the next, the
target can move to any of its 8-connected cells with the same
probability (only non-obstacle cells are considered in order
to calculate that probability).

In addition, every sensor provides a boolean measurement:
detected or non-detected. These sensors proceed as it follows,
if the target is out of its FOV, the sensor produces a non-
detected measurement. However, when the target is within
its FOV, it can be detected with a probability pD. The robots
are heterogeneous in the sense that the sensor’s FOV and pD
could vary from one robot to another.

Finally, the design of the reward function so that the
target is tracked by the team of robots is crucial. Since
some cooperation is desirable within the heterogeneous
team, a different behavior is assigned to each robot.
Thus, the reward function also depends on the specific
robot: {R1(x, y, a), R2(x, y, a), · · · , RN (x, y, a)}. For all
the members of the team, no cost is assigned to the action
stay, whereas a cost of 1 is associated to the other actions.

This application is a fair example of how MOMDPs can
help to reduce the belief space dimensionality. Here, even
though robots and target locations are considered within
the state, the one involving a greater uncertainty is the
latter. Here, the locations of the robots are assumed to be
observable (they could be obtained accurately enough by
means of the on-board sensors and the available map, at
least for the cell resolution), remaining as non-observable
the target’s position. Thus, the non-observable part of the
state consists of the target location, y = tl, whereas the
fully observable part consists of all the robots locations
and headings, x = (r1

l , r
1
h, · · · , rNl , rNh ). In this case, for a

10x10-cell grid, there would be 400 possible states for each
pursuer and 100 for the target, which means, for a single
robot, to reduce a POMDP with a 40,000-dimensional belief
space to a union of 400 disjoint 100-dimensional subspaces.

Then, the proposed coordinated approach will be applied.
That means that each robot i solves its own MOMDP without
considering the other robots. That MOMDP has states xi =
(ril , r

i
h) and yi = tl, and reward Ri(x, y, a), being possible

to specify a different strategy for each robot.
With this decentralized approach based on MOMDPs,

coordination arises implicitly due to the fused belief, and
there is no need to solve a MOMDP for the whole team nor a
POMDP, whose complexities grow exponentially with N . Of
course, the policy is not optimal, as the robots do not reason
about the other robot actions, but, as it will be seen, through

Fig. 1: Histograms of the average rewards obtained during
500 simulations for the different approaches. At each simu-
lation the expected discounted reward for the whole team is
considered.

Fig. 2: a) Simulated environment and field of view (white
cells) for each robot. Cells representing obstacles are in
yellow. If the target is in one of the cells with crosses, a high
reward is obtained. The path of the target is also shown. b)
Image of the experiments in the real CONET testbed.

proper design of the rewards and the communication between
robots, it can be obtained a helpful coordinated behavior for
many applications.

VI. EXPERIMENTS

A. Simple scenario

A simple target tracking scenario was simulated in order to
highlight the differences between the proposed approach and
a fully cooperative centralized solution. The model is the one
explained above particularized for a map with 11 available
cells (a 3x4 grid with an obstacle in the middle). Then, two
pursuer robots are considered with equal FOVs, composed
by a single cell in front of them and pD = 0.9. Each robot
gets a high reward (+100) when the target is in the cell of
its FOV, otherwise the reward is zero. The discount factor is
γ = 0.9.

A MOMDP for a single robot without considering the
other and a fully cooperative MOMDP considering both
robots were solved. The reward for the latter model was
simply the sum of the independent rewards for each robot.
Moreover, both policies were calculated with SARSOP in a
computer with an Intel Core 2 Duo processor @2.47GHz and
2.9GB, being the former computed for 0.2 seconds and the
latter for 4677. Then, three different approaches were tested:
(i) the fully cooperative policy; (ii) independent policies for
each robot but using DDF; (iii) independent policies for
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Coordinated Not coordinated
MO-Symbolic Perseus 246.13± 3.33 209.38± 3.17

SARSOP 279.64± 4.67 197.76± 3.10

TABLE I: Rewards (with 95% confidence interval) obtained
with and without coordination (DDF) during the simulations.
The value at each simulation is obtained by computing the
expected discounted reward for the whole team (γ = 0.9).

each robot without sharing any information. Fig. 1 depicts
histograms for the average rewards obtained during 500
simulations of 150 steps each one.

In this case, with much less computation time, the quality
of the proposed coordinated approach was quite close to
the fully cooperative. Actually, computing the single-robot
policy for 20 seconds the proposed approach outperformed
the centralized. In general, the reward is usually higher when
sharing information compared to no data fusion. Nonetheless,
due to the small size of the map, differences were not very
substantial in this example.

B. Simulations

Additional simulations for more complex environments
were conducted in order to show the advantages of intro-
ducing mixed observability and coordination through DDF.
A simulation environment was created from the original
testbed of the Cooperating Objects Network of Excellence
(CONET)1. The map of the real testbed was discretized
into 2x2-meter cells and resulted in the occupancy grid of
12x10 dimensions shown in Fig. 2, where cells representing
obstacles are in yellow.

Again, a team with two robots is considered. Nevertheless,
their perception capabilities are different. The first robot
carries a more accurate sensor (pD = 0.9) but its FOV is
smaller, whereas the second has a wider FOV but is less
accurate (pD = 0.8) (see Fig. 2). That is reasonable, because
many vision-based detectors work more accurately when the
FOV of the scene is more restricted. Therefore, the role of
the robot with the wider FOV would be to survey a big
area from a distant position whereas the robot with the more
accurate sensor would try to get closer to confirm the target
detection. Hence, the first robot gets a high reward (+100)
when the target is in one of the closest cells of its FOV, but
the second robot gets a high reward (+100) when the target is
in one of the central cells of its FOV (see Fig. 2); otherwise
the reward is zero.

First, the decentralized approach with independent
MOMDPs proposed in Section V was tested for this scenario.
Independent policies were calculated for each robot with
SARSOP and MO-Symbolic Perseus. Then, 500 simulations
of 150 steps each one were performed with the robots starting
at random positions and the target following the fixed path
depicted in Fig. 2. In order to include some uncertainty in
its behavior, at every time step, the target could (with equal
probability) either stay in the same cell or follow the path.

1http://www.cooperating-objects.org

Fig. 3: Software architecture of the real robots.

Map size Model Time (s) Precision Reward

12 cells MOMDP 0.18 21.97 125.87± 6.19
POMDP 1517 21.99 88.74± 8.90

80 cells MOMDP 1054 54.89 64.12± 8.61
POMDP 3169 54.80 44.49± 8.70

120 cells MOMDP 3071 57.42 42.58± 5.84
POMDP 3081 47.30 40.24± 7.18

TABLE II: Evaluation of POMDP and MOMDP policies for
a single robot (rewards with their 95% confidence interval)
as the state space is increased. Expected discounted rewards
(γ = 0.9) are considered to compute the average.

Table I shows the average rewards obtained with and
without coordination (DDF). It can be seen how, for both
solvers, the use of DDF produces an increase of the average
reward. It is also crucial to remark that a comparison with the
fully coordinated MOMDP is not included here due to the
complexity of the domain. Both solvers run out of memory
(with the same computer mentioned in the previous section)
trying to compute a fully coordinated policy.

Finally, to show the advantage of introducing the mixed
observability in the model, some simulations (100 runs of
150 steps) with a single pursuer robot were carried out
varying the size of the scenario and comparing with a
standard POMDP solution. This robot has the same sensor
configuration as the red robot in Fig. 2. Three different
scenarios are considered: a 3x4 grid without occupied cells;
the scenario in Fig. 2 (80 cells); and a 12x10 grid without
occupied cells. The results of the average rewards for both,
POMDP and MOMDP policies, are summarized in Table II.
All the policies were calculated with the same solver (SAR-
SOP) and the same computer (the one mentioned above), and
their precision measured, this meaning the distance between
the upper and lower bounds of the value function [8]. For
the smallest and medium scenarios, it can be seen that the
MOMDP policy can achieve better average rewards with
much less computation time. The biggest scenario tries to
show how the results are better for the MOMDP after similar
computation time.

C. Real experiments

In order to show the applicability of the approach, some
real experiments were conducted. In these experiments, two
robots were used to follow a target represented by a third
robot (see Fig. 2). The models and scenario considered were
the same as in the simulation described above.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Screenshots of a real experiment using coordinated robots. The color scale of the cells represents the (fused) belief
from the blue robot. In yellow the target. The FOVs of the robots are also represented. Yellow cells cannot be reached.

Figure 3 shows the software modules used by the robots.
Player [16] was used to control the robots, which were able to
localize themselves within the map. Besides, a path planning
algorithm was used to obtain the path to the high level goals
provided by the MOMDP controller (next cell to move),
whereas a local navigation algorithm was used to safely
navigate the given path. Each robot had an estimation filter
implementing the DDF scheme of Section IV and a MOMDP
controller that executed the obtained policies.

Results of the experiment with coordinated execution2

are summarized in Fig. 4. The localization of the target is
improved, as it can be seen in screenshot 4a, where the
belief state of the blue robot is narrow even though the
target is not in its FOV. Moreover, a certain coordination
arises between the robots. For instance, in screenshots 4c,
4d, 4e, the target escapes and the blue robot goes through
its lowest cost path while the red robot keeps observing the
place, as there is a certain probability of the target coming
back and it has a larger FOV. When most of the probability
mass is in the lower left room (4f), both robots eventually
move to that direction (4g), and the blue robot moves inside
the room while the red awaits observing from afar (4h).
Fig. 5 compares the trajectories of the robots and target in
two different experiments, with and without coordination.

VII. CONCLUSIONS

The scalability of POMDP models is a concern for their
application to multi-robot planning. This paper addresses
decentralized data fusion as a manner to coordinate indepen-
dent plans computed by local MOMDPs. Since each robot
does not reason about the others’ actions, this approach is
scalable. The main drawback is that sub-optimal policies
are obtained, and no intentional cooperation is considered.
However, a proper design of the local rewards allow to cope
with different applications with a coordinated team. Thus,

2See http://grvc.us.es/staff/jescap/expCONET3.mp4

Fig. 5: Paths of the target (black) and robots. Left: no
coordination. Right: coordination. In the first case the robots
lost the target in part of the scenario.

the paper mainly contributes showing through simulations
the advantages of introducing MOMDPs and a coordinated
decentralized solution versus a fully cooperative solution.
Real experiments are used to demonstrate the applicability
of the approach. Moreover, a modification of the algorithm
Symbolic Perseus to deal with mixed observability is pro-
posed and compared.

Future work includes demonstration with fleets of more
robots. A guideline to design the reward functions to achieve
a desired coordination would be of interest as well. Certainly,
better plans could be obtained if the actions of several robots
were considered during the planning phase. Thus, another
direction is to include other robots’ actions in the planning
phase, but trying to maintain locality (that is, to consider
only the actions of potential neighbor robots, no the whole
fleet). This should lead to better policies, but maintaining the
scalability of the approach.
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Petri Net Based Supervisory Control of a Social Robot
with LTL Specifications

Bruno Lacerda, Pedro U. Lima, Javi Gorostiza and Miguel A. Salichs

Abstract— We describe the implementation of a method to
control a social robot based on discrete event system supervisory
control theory. The sensors and actuators of the robot are
modelled as Petri nets, and the target behaviour is given as a set
of rules written as linear temporal logic (LTL) formulas. The
Petri net models and LTL rules are then used to build a Petri net
realization of a supervisor that is guaranteed by construction to
restrict the robot’s behaviour such that the rules are fulfilled.
This approach provides a close-to-natural-language description
of the target behaviour, and can be the basis for a human-robot
speech interaction device, where the rules for the robot to fulfil
are described by the human in natural language.

I. INTRODUCTION

Social robotics is an emerging field where a special
attention is paid to the interaction between the robot and the
human user(s). To be appropriate for this kind of interaction,
a robot must fulfil several requirements, such as providing
different forms of interacting (e.g., speech, touch), possessing
a high level of autonomy, and being able to learn and to adapt
to different situations.

In this work, we present the application of a method that
implements linear temporal logic (LTL) [7] specifications in
Maggie [14], a social robot developed at the RoboticsLab
of Universidad Carlos III de Madrid with the main purpose
of interacting with children. We will model a subset of
Maggie’s sensors and actuators as Petri nets (PN) [13], and
define rules that restrict Maggie’s behaviour in LTL. The
PN and the LTL formulas are then used to build a PN
realization of a supervisor [4] that forces the system to fulfil
the formulas. The use of LTL provides a close-to-natural-
language framework to define the rules for the robot, which
can allow the development of a speech interaction module,
where the user states the rules using a pre-defined subset
of natural language, and the robot then shows the behaviour
originated by those rules. This kind of interaction can be
used as a game for children, where they can see the impact
of the rules they state in the behaviour of the robot.

The work presented here can be seen as a first step to
develop an alternative approach to the work presented in
[9], where a method to teach action sequences by means of
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speech interaction is defined. This method relies on speech
interaction with the user, who utters orders in a pre-defined
subset of natural language. The orders are translated to a
sequential function chart (SFC) [5], a graphical programming
language based on binary PNs, used for programmable
logic controllers. SFCs feature elements such as conditional
choices, parallel execution of sequences and loops. In this
approach, the user starts from an “empty plan”, and builds
a behaviour for the robot by fully stating all the actions,
and in which order and in which conditions they are to be
performed. Conversely, in our work, the user starts with all
the possible actions for the robot being able to be executed
randomly and restricts them to the desired behaviour by
stating rules that the robot must fulfil. Hence, [9] can be
seen as a direct approach to building sequences for the robot
to execute where the whole behaviour must be specified
step-by-step, while we propose a more abstract approach,
where the desired behaviour is obtained from a set of general
rules. This might lead to the appearance of “surprises” in
the behaviour of the robot, in the sense that it may exhibit
properties that were not thought of by the user when stating
the rules.

Another technique used for humans teaching behaviours
to robot systems, which has presented good results, is pro-
gramming by demonstration, where the user shows the robot
how to perform a given task, being imitated by the robot
afterwards. Two examples of this approach are [1] and [3].
Due to its suitability to model concurrent systems and the
wide range on analysis methods available, PNs are a widely
used tool for the modelling of robot systems [15], [6]. Also,
LTL has been successfully applied as a language to specify
and synthesize correct by design admissible behaviours [12],
[10]. Furthermore, a translation between a restricted subset
of English and LTL to deal with motion planning problems
for mobile robots is defined in [11].

The paper is outlined as follows: in Section II we provide
a brief description of Maggie, the platform where we imple-
mented the method. In Section III we show how to model
Maggie’s sensors and actuators as Petri nets where some
places correspond to the truth value of binary variables used
to describe the state of the system, followed by an expla-
nation on how to write the LTL specifications, in Section
IV. Section V describes the method for the construction of
the supervisor and, in Section VI, a discussion about the
approach and future developments is provided.
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Fig. 1. Maggie, the social robot, interacting with a child.

II. MAGGIE, THE SOCIAL ROBOT

Maggie, depicted in Figure 1, is a social robot developed
at the RoboticsLab of Universidad Carlos III de Madrid to
interact mainly with children. In this Section, we provide
a brief description of its capabilities, further details can be
found in [14].

Maggie is a 1.35m tall girl-like doll. Her base is equipped
with two differentially driven wheels and a caster wheel on
each side. The arms and the eyelids have 1 DOF: up/down,
while the neck has 2 DOF: up/down and left/right. She also
possesses tactile sensors, including on the shoulders and
on top of her head. These are the sensors and actuators
that we took into account in our implementation. Maggie
possesses many other capabilities, such as infrared and
ultrasound sensors used for navigation, a color camera for
people tracking and a mouth shape with invisible web-cam
and coloured lights synchronized with the speech. These
capabilities result in a platform well suited to study human-
robot interaction and robot learning by training and teaching.

The control architecture is based on the automatic-
deliberative (AD) control architecture proposed in [2]. In this
architecture, the robot skills are divided in two levels. In the
automatic level, we find the skills related with robot sensors
and actuators. In the deliberative level, we find higher-
level skills, such as a planner or our implementation of the
feedback-loop of supervisory control. The skill we developed
subscribes to events representing changes in sensor readings,
for which an event handler is implemented. Also, it can order
the execution of skills related to performing simple actions
(e.g., raising an arm or start spinning).

III. PETRI NET MODELLING AND EXECUTION

We will use PNs to model Maggie behaving freely in
the environment. This model is a building block of the
supervisor, being used in conjunction with the LTL formula

specifying the target behaviour to build it. In the PN models
used here both places and transitions have a specific inter-
pretation:
• Places represent the value of binary variables that are

used to define the state of the system. For each variable,
there is one place representing that is is true and one
place representing that is is false. For all reachable
markings of the Petri net, there is one token in one
of these places and zero in the other. This means that,
for a given marking, one can unambiguously extract the
corresponding state. A state is the set of variables for
which the places meaning that they are true have one
token;

• Transitions represent orders to execute actions or
changes in sensor readings, i.e., the firing of a transition
represents a communication between our implementa-
tion and the automatic level of the architecture.

In Figure 2, the PN model for Maggie is depicted. The
model is composed of several modules, one for each actuator
and one of each sensor. We represent the interpretation of
each place and transition as 〈.〉. For example, a token in place
p1 means that moving f orward is true and a token in place
p2 means that moving f orward is false. Furthermore, the
firing of transition t1 represents executing the move f orward
action and the firing of transition t19 means that someone
started touching the tactile sensor on the left shoulder.

To illustrate, the initial state for Maggie, given by the
depicted marking, is the set:

{base idle, head center, head down, le f t arm down,
right arm down, le f t eyelid down, right eyelid down}

We note that, for the base, when a start action is issued,
the robot starts performing that action until a stop action
is issued, that is, the action continues until it is explicitly
stopped. For the other models, we assume that the actuator
moves for a fixed amount and then stops, hence no stop
action is required.

We implemented a Petri net executor in C++, so that
the robot is able to run its system Petri net. We start
by dividing the transitions into transitions corresponding to
actions - t1 to t18 - and transitions corresponding to changes
in sensor readings - t19 to t24. The implementation is a
loop that, in each step, randomly selects one of the active
transitions corresponding to actions and fires it, ordering
the execution of the corresponding action and updating the
marking. Also, when one of the sensors changes state, the
handler interrupts the loop, and the transition corresponding
to that sensor change is immediately fired and the marking is
updated. By running this PN without supervising it, Maggie
simply executes random actions, displaying an unrestricted
behaviour.

IV. WRITING THE LTL SPECIFICATION

We will write LTL formulas that restrict Maggie’s be-
haviour. These formulas are written over the set Π, defined by
the union of the set E of events (actions plus sensor readings)
and the set D of variables that describe the states. Formulas
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Fig. 2. The Petri net model for Maggie’s different actuators and sensors.

LTL are written using the usual propositional connectives
plus a set of temporal connectives, including the next (X),
always (G) and until (U) connectives. LTL formulas are
evaluated over infinite sequences of sets of propositional
symbols σ : N→ 2Π. Intuitively, for i ∈ N:

• A state σ(i) satisfies Xϕ when state σ(i + 1) satisfies
ϕ;

• A state σ(i) satisfies Gϕ if all states σ( j) with j ≥ i
satisfy ϕ;

• A state σ(i) satisfies ϕUψ if ϕ is satisfied in all states,
until a state appears where ψ is satisfied.

With these operators, we can specify a wide array of
different rules for Maggie to fulfil. We will illustrate this by
providing the LTL specifications for three different target be-
haviours. The first behaviour is a simple sequence triggered
by touching the head of the robot. The sequence can be stated
in natural language as “When the head is touched raise the
left arm, then raise and lower the right arm. When the head
stops being touched, lower the left arm”. This sequence can
be translated into the following simple rules:

• The left arm must only be raised when the head is being
touched:

G(touching head⇔ (X(¬le f t arm down))) (1)

• The right arm must only be raised after the left arm is
raised:

G(raise le f t arm⇔ (Xraise right arm)) (2)

• After raising the right arm, it must be immediately
lowered again:

G(raise right arm⇒ (Xlower right arm)) (3)

The second behaviour shows how to specify different
reactions to different sensor readings. We can state it has “If
the left shoulder is touched, wait until the right shoulder is
touched and then raise your right arm. If the right shoulder is
touched, wait until the left shoulder is touched and raise your
left arm. After raising an arm, lower it again and return to
the initial state”. To keep track of which shoulder is touched,
we use the state of the eyelids. If both eyelids are down, then
no shoulder has been touched yet. If one of the eyelids is
up, then the corresponding shoulder was touched and Maggie
is waiting for the other shoulder to be touched. Hence, the
behaviour can be implemented by the following rules:

• If the left shoulder is touched and both eyelids are down
(i.e., no shoulder was touched yet), raise the left eyelid:

G((sense le f t shoulder∧ right eyelid down∧
le f t eyelid down)⇔ (Xraise le f t eyelid)) (4)

• If the right shoulder is touched and the left eyelid is up
(i.e., the left shoulder was previously touched), raise the
right arm:

G((sense right shoulder∧¬le f t eyelid down)⇔
(Xraise right arm))

(5)
• After raising the right arm, return to the initial state by

lowering the left eyelid and the right arm:

G(raise right arm⇔ (Xlower le f t eyelid)) (6)

G(lower le f t eyelid⇔ (Xlower right arm)) (7)

• If the right shoulder is touched and both eyelids are
down (i.e., no shoulder was touched yet), raise the right
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eyelid:

G((sense right shoulder∧ right eyelid down∧
le f t eyelid down)⇔ (Xraise right eyelid)) (8)

• If the left shoulder is touched and the right eyelid is up
(i.e., the right shoulder was previously touched), raise
the left arm:

G((sense le f t shoulder∧¬right eyelid down)⇔
(Xraise le f t arm))

(9)
• After raising the left arm, return to the initial state by

lowering the right eyelid and the left arm:

G(raise le f t arm⇔ (Xlower right eyelid)) (10)

G(lower right eyelid⇔ (Xlower le f t arm)) (11)

Note that in this behaviour, touching the same shoulder more
than one time in a row does influence the arm to be raised.
After touching one of the shoulders, Maggie ignores all other
sensor readings until the other shoulder is touched. When that
happens, she raises the corresponding arm.

The third behaviour is also triggered by touching the head,
but we allow the robot to perform random actions during the
behaviour. It can be stated as “Move arms randomly. When
the head is touched, start spinning until both arms are up”.
This can be translated into the following rules:

• Only start spinning when the head is touched, you are
not spinning yet and both arms are not already up:

G((sense head∧ (¬spinning)∧
¬(¬le f t arm down∧¬right arm down))⇔
(Xstart spinning))

(12)

• After starting to spin, continue spinning until both arms
are up:

G(start spinning⇒ (X(
spinningU(¬le f t arm down∧¬right arm down))))

(13)
• When both arms are up, stop spinning (or continue

stopped if you are not spinning):

G(¬le f t arm down∧¬right arm down)⇒
(X¬spinning)) (14)

All of these examples also include an additional formula
which avoids the execution of the actions that are not referred
to in the specification, i.e., in each example, a formula of the
form G

(∧
e∈Eo ¬e

)
, where Eo is the set of actions that is not

mentioned in that example is also added.

V. CONSTRUCTING THE SUPERVISOR

To build the supervisor, we need to define a way to
compose the LTL formulas with the PN model. This is
done by translating the formula ϕ to a (non-deterministic)
Büchi automaton (BA) Bϕ that accepts exactly the infinite
sequences that satisfy ϕ . There are several methods for the
construction of such automaton. In the implementation of the
method we present here, we use one of the most efficient

Fig. 3. The Büchi automaton for LTL formula (14)

translation algorithms, LTL2BA, described in [8]. In Figure
3, we show the BA obtained for formula (14).

The alphabet set of this automaton is 2E∪D, but proposi-
tional logic formulas in the disjunctive normal form (DNF)
are used to describe the transition labels in a more compact
way. A formula in the DNF is the disjunction (∨) of a set of
conjunctive clauses. A conjunctive clause is a conjunction
(∧) of literals. A literal is a propositional symbol or its
negation. For example, the transition label from sate y to
state x means that any element of 2E∪D that does not contain
spinning and contains right arm down or that does not
contain spinning and contains le f t arm down is a label for
the transition. We also note that the automata outputted by
LTL2BA are trimmed, i.e., all their states can be reached and
there is a path between each state and at least one accepting
state.

The PN that restricts Maggie’s behaviour to the one
specified by an LTL formula is a PN that simulates a run
in parallel of the PN model of Maggie and the observer1 of
the BA obtained for that formula, where a transition t can
only fire in parallel with a transition of the observer of the
BA when we are ensured that the marking to which the PN
evolves satisfies the formula labelling the BA transition. This
is done by looking at each transition of the PN and checking
in which conditions it can fire while satisfying the transition
labels of the BA. To illustrate, we will show how to compose
the transitions from state x in Figure 3 with transition t3 of
Figure 2. We start by stating the facts that are guaranteed to
happen after t3 fires:
• Action start spinning has just occurred;
• All other actions and sensor readings in E did not just

occur;
• State description variable spinning is true - this fact is

guaranteed because place p5, the place corresponding
to spinning being true, is an output place of t3, hence
after t3 fires it will always have a token - and base idle
is f alse - by the same reasoning as with spinning.

Hence, we can define a partial valuation that represents all
the information about events and state description variables
that is guaranteed to happen after the firing of t3:

vt3(π) =


1 if π ∈ {start spinning,spinning}
0 if π ∈ (E \{start spinning})∪

{base idle}
↓ if π ∈ D\{spinning,base idle}

1The observer of a non-deterministic automaton G is its deterministic
version, built using the known power-set construction [4].
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The valuation is undefined for all state description vari-
ables that are not directly related to the firing of t3, in the
sense that none of the places representing its value receives
a token with the firing of t3. This valuation can be applied
to the transition labels of the BA, which we will denote as
J.Kvt3

. The result of such evaluation is:
• true or f alse if vt3 provides enough information to

evaluate the truth value of the label;
• The formula composed of the elements of the label for

which vt3 should be defined for one to unambiguously
be able to evaluate its truth value.

In the case of the transitions of the BA in Figure 3:

Jright arm down∨ le f t arm downKvt3
=

right arm down∨ le f t arm down
(15)

JtrueKvt3
= true (16)

u

v
(¬spinning∧ right arm down)

∨
(¬spinning∧ le f t arm down)

}

~

vt3

=

u

v
( f alse∧ right arm down)

∨
( f alse∧ le f t arm down)

}

~

vt3

= f alse

(17)

J¬spinningKvt3
= f alse (18)

Due to the non-determinism of the BA, we will have to
analyse 3 different cases for state x:
• Can we keep the BA is state x after firing t3? To

guarantee that we stay in state x, we need to check
in which conditions can t3 fire while satisfying formula
(15) and not satisfying formula (16), i.e., satisfying the
label of the transition that goes to x and not satisfying
the label of the transition that goes to y:

(right arm down∨ le f t arm down)∧¬true = f alse

This means that this situation can never happen. Thus,
we do not add transitions to the supervisor;

• Can we take the BA from state x to state y after firing t3?
In this case we need to check in which conditions can
t3 fire while not satisfying formula (15) and satisfying
(16), i.e.:

¬(right arm down∨ le f t arm down)∧ true =
¬right arm down∧¬le f t arm down

Hence we add two transitions to the supervisor (one
for each conjunctive clause), with arcs equal to t3 plus
place {x} as an input place and place {y} as an output
place (thus evolving the “observer” of the BA from
the state {x} to state {y}) and, for each of the added
transitions, a reflexive-arc2 to the place representing
the corresponding literal, for example, for the transition
corresponding to ¬right arm down, a reflexive-arc to
place p18;

2A reflexive arc between a transition t and place p is a pair of arcs, one
from p to t and another from t to p. Hence, t only fires when there is a
token in p but it does not change the amount of tokens in p.

• Can we take the BA from state x to both states x and y
after firing t3? In this case we need to check in which
conditions can t3 fire while satisfying both formulas (15)
and (16) , i.e., satisfying:

(right arm down∨ le f t arm down)∧ true =
right arm down∨ le f t arm down

Hence, we add one transition to the supervisor with arcs
equal to t3 plus place {x} as an input place and place
{x,y} as an output place and reflexive-arcs to the places
representing the literals in the obtained conjunctive
clause.

Figure 4 depicts the fragment of the supervisor obtained
from the analysis above, showing the three transitions cre-
ated. The algorithm starts by analysing the transitions from
the initial state of the Büchi automaton and adds newly
reached states of the observer to a queue to be analysed
next. Note that the fact that both formulas (17) and (18)
are false means that when we analyse t3 in the observer BA
state {y}, no transition will be created. This is aligned with
what one would expect, since we are building a PN that
satisfies the natural language rule “When both arms are up,
stop spinning (or continue stopped if you are not spinning)”,
hence the action start spinning must be disabled whenever
both arms are up, which, simplifying, is the meaning of BA
state y.

The PNs obtained using this composition are then used
in the feedback loop of modular supervisory control [4].
Informally, they run in parallel with the PN model of Maggie,
executing the same events, and outputting the set of enabled
events, given by the intersection of the labels of the active
transitions for each PN supervisor. At each step, all events
that are not in the set of enabled events cannot be executed
by Maggie. This feedback loop was implemented on top of
the Petri net executor.

In the video available at http://bit.ly/dQqVQK, we
show both the uncontrolled behaviour of Maggie and its
behaviour when being supervised by the Petri nets obtained
from the specifications described here.

VI. CONCLUSION AND FURTHER WORK

We described the implementation on Maggie, the social
robot, of a method to perform PN-based supervision of
robotic tasks, where the admissible behaviours are given in
LTL. The similarities between natural language and temporal
logic, and the fact that we can write formulas over both
the events (actions plus sensor readings) of the system and
a set of variables used to describe the state of the robot,
allows the writing of rules for a wide array of different goal
behaviours. This approach can be the basis for a method
based on speech interaction, that allows the user to state
rules for the robot to fulfil in natural language. Specifically
for Maggie, this can be made into a game where children
can see the impact of their rules in the robot’s behaviour.
Future work includes creating such a method, where the
allowed natural language utterances are translated into LTL
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Fig. 4. A fragment of the obtained supervisor

and the method presented here is then applied. This can
probably be achieved by adapting the structured English
defined in [11] to Maggie’s domain. Maggie already has a
speech recognition skill, hence this appears to be the main
issue in the development of the method. Afterwards, we
intend to compare this approach with the work presented
in [9], where sequences of actions are taught to Maggie
by means of speech interaction, where the user exhaustively
describes every possible action to be executed. We feel that,
by providing a more abstract approach where a set of rules
results in a certain behaviour, this approach might be more
appealing to older children that already have the capabilities
of inferring what might be the consequences of stating a
given rule for the robot to fulfil.
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Planning under Uncertainty for Search and Rescue

Ana Rita Mendes, Matthijs T.J. Spaan and Pedro U. Lima

Abstract— Partially observable Markov decision processes
(POMDPs) provide a framework for planning under uncer-
tainty. We present an application of POMDPs in a search
and rescue situation. Specifically, the aim of the problem is
to find victims in a disaster environment. We will define,
implement and test POMDP models that suit the problem and
its characteristics. Part of the environment models and their
features will be learned (by letting the robot interact with it)
and taken into account when building the model. We compare
different modeling approaches and examine their trade-offs in
modeling power and computational complexity.

I. INTRODUCTION

Disasters, and rescues from disasters represent a worrying
social issue. Fire scenes, major traffic accidents or building
explosions are just a few examples of situations that represent
very hazardous environments, where many human lives are
endangered (not only victims, but rescue teams also). More
often now, robotics can help in these environments, even
though most tasks are still the responsibility of humans. In
order to be helpful, robots must learn how to behave in
these environments. However, catastrophes and unplanned
situations are not readily available for training. Hence, we
will instead use a reliable simulator, USARsim (Unified
System for Automation and Robot Simulation). Due to the
existence of RoboCup Rescue Competition [2], many maps
for rescue situation are available for this simulator, as well
as stable code built by the participating teams in order to act
in these environments.

In a simulated disaster environment, robots should be able
to look for the victims in an optimal way even though their
positions are unknown. Due to the uncertainty of victim
positions, as well as other common uncertainty sources
in robotics (sensors, actuators, etc.), the problem will be
modeled as a Partially observable Markov decision pro-
cess (POMDP) [4]. POMDPs form a powerful framework
for planning under uncertainty and have been gaining in
popularity in robotics [10], [9], [5]. For instance, in [8]
POMDPs were applied to the problems of robot localization
and navigation.

Even when a topological map of the site is known a priori,
it should be kept in mind that the map represents a building
in a rescue situation and as a result some of its structure
might have changed. As such, we will learn some of the
models of the POMDP, in particular the parameters of the
topological map.

This work was funded by Fundação para a Ciência e a Tecnologia
(ISR/IST pluriannual funding) through the PIDDAC Program funds and
was supported by project PTDC/EEA-ACR/73266/2006.

All authors are with the Institute for Systems and Robotics, Instituto
Superior Técnico, Lisbon, Portugal.

Fig. 1. USARsim map portion along with the nodes that will represent it.
Moreover, two victims can be seen in nodes 2 and 4.

We will build our work on both code and a map from
the competition of 2008. The code belongs to the Jacobs
University team [6] and it will be responsible for all the low
level control. The map represents the interior of an office
building with several injured victims for the robot to find,
shown in Fig. 1. A POMDP model will be built, learned
and tested in this environment, interacting with the controller
code, giving the robot instructions on what to do, while
receiving observations of the environment (only of some of
its features).

The rest of this paper is organized as follows. First,
Section II provides the necessary background on POMDP
models. Section III describes how we learn the transition
models for the robot, while Section IV details the POMDP
models we define for our victim-localization task. Section V
presents some experiments using USARSim, and Section VI
concludes.

II. BACKGROUND

A POMDP models an agent acting synchronously with
the environment, aiming to find the best way to act at every
time step. In order to do so, at every time step a reward (or
a penalty) is given to the agent, so it can understand its goal,
what it should do and what it should avoid doing. POMDPs
can be described by [4]:

S a discrete and finite space state;
A a finite set of possible actions, where A(s) repre-

sents the actions available at state s ∈ S ;
Tsas′ the transitions probabilities, the probability of going

to state s′ when in state s and given the action taken
a, p(s′|s,a);

Rsa a reward function, giving the immediate reward for
taking the action a when in state s;

Ω the set of all possible observations;
Ooas′ the observation model, representing the probability
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Fig. 2. Dynamic Bayesian network for a POMDP with two state variables.

of observing o while being at state s′ after taking
action a, p(o|s′,a).

Since the state is not known, to be able to make decisions,
some kind of memory would be necessary to keep track of
(possibly) the entire history of the process. However, using
a probability distribution over all of the states has the same
information as keeping track of the complete history. That
probability distribution is called a belief and the POMDP is
simply an MDP with belief states instead of nominal states.

When an action is performed and an observation received,
the distribution has to be updated to reflect the new knowl-
edge. More formally, let b(s) denote the probability assigned
to world state s by belief state b. Updating the belief is
computing b′ which can be obtained given the previous belief
state b, the action executed a and the observation o through:

b′(s′) = P(s′|o,a,b) = O(s′,a,o)∑s∈S T (s,a,s′)b(s)
P(o|a,b)

, (1)

where P(o|a,b) can be seen as a normalizing factor in order
for b′ to sum to one [4].

To represent and solve models in this paper we will use
Symbolic Perseus [7], which is a point-based value iteration
algorithm for POMDPs. Moreover, to represent transition,
observation and reward functions in a compact way they are
represented as Dynamic Bayesian networks (DBNs). A DBN
is an acyclic graph that allows representation at the variable
level instead of the state level [3]. Their graphs represent
two consecutive time steps, with nodes as the variables
(state, observation and reward variables) and connections
as the probabilistic dependencies. Furthermore, Symbolic
Perseus allows for exploiting context-specific independence
by representing the conditional probabilities as Algebraic
Decision Diagrams (ADDs) [1]. A DBN representing a
simple POMDP is shown in Figure 2.

III. LEARNING ROBOT TRANSITION MODELS

In general, POMDP solvers require the transition, obser-
vation, and reward models to be known a priori. In this
paper, we focus on methods for defining the transition model
for a robot, by learning the transitions between nodes in
a topological map. Figure 3(a) shows the topological map
representation corresponding to Fig. 1.

Defining the transition model is one of the most important
tasks when creating a POMDP model. The closer the transi-
tion model is to reality the better the model will work when
in real situations. In this paper the environment is available
for testing and learning the transition model, allowing the
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(a) Topological map.
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Fig. 3. (a) Topological representation of the map of Fig. 1 with 9 nodes
and their connections. (b) Recorded points along paths used to learn the
transition model. Nodes are printed in different colors and node centers are
marked with a black circle.

POMDP model to reflect that knowledge and the planning
to be more accurate.

In order to learn the model, both the environment and
the controller are used. The robot explores several times
the paths between all the different considered nodes. In
each run the time taken to reach the destination is recorded
and with several runs is possible to obtain a good number
of executions for each path in order to calculate reliable
average results. Positions and time stamps were recorded
along the entire path, in order to keep track of the whole
path. Figure 3(b) illustrates the recorded positions along the
tests.

The time step allowed for each move has to be defined
and it should be chosen carefully. Having smaller time-steps
results in larger planning horizons as more steps will be
needed when executing the plan. On the other hand, using
longer time-steps results in less responsive and less accurate
plans. With a time step established all the paths are checked
for the position of the robot at that time. The probabilities
of going from one node to another adjacent node can be
extracted from the recorded paths. Several time steps were
used to obtain a few different transition models. Figure 4
shows the transition probabilities for two different actions
and different time steps. It is very clear to see the difference
in some paths for which 30s did not allow the robot to leave
the node but with 50s it does indeed get to its destination with
some probability. Moreover, with no time limit all the paths
were executed successfully. However, in a more general case
a robot will obviously not be able to reach each destination
with probability 1.

Figure 5 represents the average of the probability of
arriving at the destination node, for all paths, based on which
we choose the time step to be used for the real tests. With
smaller time steps such as 20s or 30s for most paths the
robot would never get to the goal while with >60s many
paths were successfully completed. As we want the time
step to be short to allow for quicker reactions, and given
the POMDP can handle uncertainty in the transitions, we
define the time step to be 50s.

With the probabilities defined they have to be integrated in
the generation of the model. However, probabilities that are 0
or 1 will not be used, as this would be a too strong statement,
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Fig. 4. Transition probabilities for 2 actions with 3 different time steps.
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Fig. 5. Mean probability of arriving at the desired node for time step from
1 to 150s.

given the fact that we are considering an abstraction of
reality. Keeping in mind that these environments always carry
a great deal of uncertainty all probabilities that equal 1 will
be set to a slightly smaller value and 0 probabilities will be
set to a very small value, but larger than 0.

IV. POMDP MODELS FOR SEARCH AND RESCUE

In this section we will develop POMDP models for the
victim localization task referred to in the introduction, which
are based on the learned transition model as described
in Section III. Every problem can be seen from different
perspectives and therefore defined and designed through
different approaches. As such, for this specific planning
problem, two models will be developed and explored. We
assume that a robot can detect victims with high probability
when both are in the same node, however, from a POMDP
point of view, this can easily be relaxed.

Robot

Victim'

Robot'

Victim

t t+1

Reward

GoToNodeX

RobotLoc

VictimLoc

(a) DBN representation of the POMDP.

Variable Type Name Domain
State Robot 9 nodes
State Victim 9 nodes
State Seen yes/no/done

Observation RobotLoc 9 nodes
Observation VictimLoc 9 nodes+no observation

(b) POMDP variables.

Fig. 6. POMDP representation for Model A.

A. Model A - victims as variables

First we consider a model in which the number of victims
present in the environment is assumed be known. A Dynamic
Bayesian network representing the model is shown in Fig-
ure 6(a). Considering the map presented in Figure 3(a) with
one victim in one of the nodes (any node) the aim of the robot
is to find the victim. With this setup, the state variables will
be the location of the robot and each victim (only one for one
victim). Moreover, a third state variable, seen, will be needed
(one for each victim) to keep track of which victims have
been detected and allow a correct distribution of rewards.
Victim variables and the robot variable each have 9 possible
values (as many as the number of nodes). Seen variables have
3 possible values, no, yes and done.

The transition model for each seen variable can be de-
scribed by: it starts with with value no, once the correspond-
ing victim is detected the value changes to yes and in the
next time step it changes to done. A victim is considered to
be detected once the robot and the victim are in the same
node. Victim variables have the identity matrix as transition
model, as they never change their state (i.e., victims remain
in the same node for the entire problem). The transition
model for the robot has to be learned from interacting
with the environment as detailed in Section III. Regarding
observations, the robot is considered to localize itself without
any error (taking into account the controller used for testing,
that is a valid assumption). For the victims, each has an
observation model according to which if the robot and the
victim are in the same node the victim is detected at that node
with 99% chance, otherwise, the victim is not detected.

The reward function depends only on seen variables, and
is the sum of a reward function per seen variable, as they
are independent. When the variable is in state no or done
the robot receives a small negative reward, when it is in state
yes, the robot receives a large positive reward. Due to the fact
that these variables only remain in state yes for one time step
and can never go back to it, only one positive reward can be
received per victim. In this way, we are preventing the robot
from finding the same victim more than once, encouraging
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(a) DBN representation of the POMDP.

Variable Type (Quantity) Name Domain
State (1) Robot 9 nodes
State (9) VictimAtNode yes/no
State (9) Seen yes/no/done

Observation (1) RobotLoc 9 nodes
Observation (9) VictimPresent yes/no

(b) POMDP variables.

Fig. 7. POMDP representation for Model B.

it to look for other victims.
To sum up, the model is described by its variables and their

possible states (shown in Table 6(b)), the transition model
(for variables Robot and Seen), the observation model (for
variables Robot, Victim) and the reward function (for variable
Seen).

B. Model B - Nodes as Variables

Another approach to the same problem with the same map
(Figure 3(a)), is to consider the nodes as variables, instead
of the victims. Each node is represented by a variable, e.g.,
VictimAtNode01 for node one. This variable can assume two
values, yes and no, representing the presence or absence
(respectively) of a victim in that specific node. This represen-
tation is very useful for when the number of victims present
is unknown. The previous model assumed the number of
victims were known from the start and that is not necessarily
the case.

The Seen variables are still needed to keep track of what
has been seen before and what is new (allowing the correct
distribution of rewards), representing which nodes have been
seen. As there are 9 VictimAtNode variables, 9 Seen variables
are needed, with the same 3 possible values, yes, no and
done. This leads to 19 state variables, one from the robot, 9
from VictimAtNode variables plus the 9 Seen variables.

The transition model of the robot is the same as for
model A (explained in Section III). The presence or absence
of victims at a specific node does not change over time,
as victims do not move. As a result, variables concerning
victims (VictimAtNode) have identity as transition model. As
the Seen variables keep track of visited nodes, the transition
model is slightly different now. All nodes start with Seen in
the no state. Once a node is visited if there is a victim in

it Seen variable will switch to yes and in the next state it
will switch to done. If a victim is not present, the node is
most likely considered visited and without a victim, so with
99% chance Seen changes to done (staying in no with 1% to
contemplate the small possibility that the victim was there
but the robot did not see it).

Regarding observations, the robot is once more considered
to localize itself without any error. For the victim nodes the
idea is the same as with victim variables in model A. If the
robot is in node x and a victim is there too (victimAtNodex =
yes) the observation for VictimPresentx will be yes with 99%
chance (and no with 1% chance). The reward function is the
same as for model A. Each Seen variable is responsible for
a reward. A negative reward for states no or done and a big
positive reward for state yes, which happens only once (or
never) per variable.

To sum up, the model is described by the variables and
their possible states (shown in Table 7(b)), the transition
models (for variables Robot, Seen1, Seen2, . . ., Seen9),
the observation model (for variables Robot, VictimAtNode1,
VictimAtNode2, . . ., VictimAtNode9) and the reward function
(for variables Seen1, Seen2, . . ., Seen9). A Dynamic Bayesian
network representing the model is shown in Figure 7(a).

V. EXPERIMENTS

The basic structure of the whole system needed for the
experiments is represented in Figure 8. The models defined
in the previous section are generated by the generatePOMDP
function. Then the model is solved (through solvePOMDP),
which runs Symbolic Perseus [7] to compute the policy.
There are two ways for testing a POMDP policy. The
POMDPsimulation function, which simulates the environ-
ment, i.e., all variables are simulated according to their
specifications and the POMDP policy is tested within its own
model. The USARsimulation function, on the other hand, is
ready to deal with real environments, that is, this function
interacts with the Jacobs controller, which in its turn operates
on the USARsim simulation.

With these two functions it is possible to observe and
compare the estimated behavior with the simulated real
behavior. The more similar their behaviors are the better the
model describes the environment. That is, with more realistic
and accurate transition and observation models reflecting the
behavior of the system it is possible to obtain better plans.
For using the models with the USARsim environment, the
basic structure of the whole system is represented in Figure 8.
Both the USARsimulation function and the controller code
were adapted in order to be able to communicate with each
other.

In this section the models will be tested for their behavior.
Moreover, model B, due to its large number of variables is
also studied regarding the model complexity.

A. Experiments with model A

Model A, as described in Section IV, is solved through
the solvePOMDP function. Given its reduced number of
variables its complexity is low and a policy is computed
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Fig. 8. Experimental setup, showing the different components of the
evaluation setup.

TABLE I
TESTING MODEL A WITH A VICTIM IN NODE 2 AND THE ROBOT

STARTING IN NODE 8.

(a) USARsim testing environment.
Step Action Robot Victim Reward Cum.
Nr. Loc. Loc. Reward
1 goTo9 09 No -0.65 -0.65
2 goTo8 08 No -0.59 -1.24
3 goTo5 05 No -0.52 -1.76
4 goTo6 06 No -0.43 -2.19
5 goTo5 05 No -0.97 -3.16
6 goTo7 05 No -0.97 -4.13
7 goTo7 07 No -0.29 -4.42
8 goTo5 05 No -0.95 -5.37
9 goTo1 05 No -0.95 -6.32

10 goTo1 01 No -0.07 -6.39
11 goTo4 01 No -0.93 -7.32
12 goTo4 04 No -0.34 -7.66
13 goTo1 04 No -0.90 -8.56
14 goTo1 01 No -0.90 -8.46
15 goTo2 02 02 50.000 40.54

(b) POMDPsimulation simulation environment.
Step Action Reward Robot Victim Cum.
Nr. Loc. Loc. Reward
1 goTo9 -1.00 09 No -1.00
2 goTo8 -0.65 08 No -1.65
3 goTo5 -0.59 05 No -2.24
4 goTo6 -0.52 06 No -2.76
5 goTo5 -0.43 05 No -3.19
6 goTo7 -0.97 07 No -4.16
7 goTo5 -1.00 05 No -5.16
8 goTo2 -1.00 05 No -6.16
9 goTo2 -1.00 05 No -7.16

10 goTo2 -1.00 05 No -8.16
11 goTo2 -1.00 02 02 -9.16
12 goTo4 50.00 02 02 40.84

within a couple of minutes. The model is then submitted to
a few tests, in order to check its behavior in the USARsim
simulated environment. Moreover, this behavior is compared
with simulations with POMDPsimulation where the position
of the victims is given as an input, so both situations can be
compared. Table I shows the behavior of the system for one
test situation compared with the simulated behavior.

It is possible to observe some differences between the
plans executed in USARsim and in POMDPsimulation. As
we are dealing with uncertainty this is not unexpected, but
comparing globally the number of iterations, the rewards
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Fig. 9. Testing area map with the positions of the robot during the test.

obtained and the robot’s behavior in both situations, the
model (and mainly the transition probabilities) seems to
represent reality with enough accuracy to have a good plan.

B. Experiments with model B

Model B, due to the high number of variables (and
states), is too complex to solve with the specified settings
in Section IV. The computational resources (RAM memory)
needed to run the function solvePOMDP on this model are
not available. In model B, as the number of variables grows
with the number of nodes (at a rate of two state variables
and one observation variable per node), large maps become
impossible to solve, due to memory limitations. As such, the
model was tested in simulation (with POMDPsimulation)
and in USARsim (with USARsimulation) with a smaller
version of the problem, for only 5 nodes, instead of 9
(Figure 9(a)).

The robot started in node 3 and victims could be found
in nodes 4 and 2. Table II shows both runs, simulated with
POMDPsimulation and tested in USARsim with USARsimu-
lation. Figure 9(b) shows the path the robot executed during
the USARsim test. It has to be reminded that the transition
model used for this model is the same as for model A, as
the environment is the same. Once more, the model seems
to represent reality well enough for the policy to execute a
good plan.

Reducing complexity can also be accomplished by low-
ering the number of observation variables and/or number of
observations. This solution implies that some changes are
made to the model. Two situations are studied in order to
decrease the complexity of the model. In the first situation
(Model5) the number of observation variables is decreased
from as many as the number of nodes to only one. This vari-
able represents observations for all nodes, thus the number
of possible observations increases as it represents observing
the victim in any of the nodes and not observing the victim.
This solution is slightly limiting the problem, as it means in
each time step no more than one observation is possible.

The second situation (Model6) is accomplished simpli-
fying the previous one (Model5). Still only one observa-
tion variable is used to observe any victim in any of the
nodes, however, that is achieved only through two possible
observations, hence reducing considerably the number of
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TABLE II
TESTING MODEL B, WITH 5 NODES, WITH VICTIMS IN NODES 2 AND 4

AND THE ROBOT STARTING IN NODE 3.

(a) USARsim testing environment.
Step Action Robot Victim Victim Reward Cum.
Nr. Loc. Pres.02 Pres.04 Reward
1 goTo1 01 No No -4.87 -4.87
2 goTo3 03 No No -4.89 -9.76
3 goTo2 02 Yes No 46 36.24
4 goTo5 05 Yes No -4.91 31.33
5 goTo1 03 Yes No -5 26.33
6 goTo1 01 Yes No -5 21.33
7 goTo4 01 Yes No -5 16.33
8 goTo4 04 Yes Yes 46 62.33

(b) POMDPsimulation simulation environment.
Step Reward Action Robot Victim Victim Cum.
Nr. Loc. Pres.02 Pres.04 Reward
1 goTo1 -5 01 No No -5
2 goTo3 -4.87 03 No No -9.87
3 goTo2 -4.89 02 Yes No -14.76
4 goTo1 46 01 Yes No 31.24
5 goTo4 -5 04 Yes Yes 26.24
6 goTo3 46 04 Yes Yes 72.24
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Fig. 10. Graphic representing the experiments for the two test cases with
fewer observation variables.

observations. The possible observations are seeing or not
seeing a victim. As such, information on the victim’s position
is not so clear. The robot is assumed only to detect a victim
when in the same node as the robot and seeing a victim in a
close node would be, in this model, interpreted as seeing it in
the node the robot is in, as the observation for seeing victim
does not allow any information regarding the position.

The complexity was measured through the time taken
to solve the POMDP. Figure 10 allows the computation
times for Model5 and Model6 to be compared with Model1.
It is possible to observe that decreasing the number of
observations represents a much lower complexity. However,
the models representing the whole desired area (9 nodes) are
still uncomputable given the available resources.

VI. CONCLUSIONS

In this paper POMDP models were developed for planning
under uncertainty in search and rescue situations, in which
a robot has to locate victims. Dealing with uncertainty is
an area of great scientific interest, and can have a positive
effect on socially relevant planning problems such as search
and rescue.

We showed that the POMDP approach can be used in
a victim-localization task. However, care needs to be taken
when developing the POMDP models, in order to attain the
correct level of abstraction, in order to keep the models
manageable for solving. Two different POMDP models were
developed, one which allows for a much faster computation
but with the downside of needing some a priori knowledge
regarding the number of victims present at site. The other
model, on the other hand, allows for an arbitrary number of
victims but with computational time growing very fast with
the number of nodes in the map.

Transition probabilities for the robot were learnt, allow-
ing the POMDP models to take into account environment
features and the characteristics of both robot and controller.
This is crucial for planning problems and it represented a
major concern in this paper, as it models the way a plan
would be executed by the system.

In future work, we would like to take into account the
fact that in real rescue situations the exact same environment
would never be available for learning the transition model
previously. Even if the transition model was learned for
the same area, some walls could be down, some new paths
open and some hazardous obstacles along the way. Designing
POMDP algorithms that can efficiently changing transition
models remains an important and relevant challenge. Further-
more, a clear future direction is to learn as well the robot’s
observation model.
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Abstract— Autonomous navigation in real roads has been a 
concern for several years now, especially for the Intelligent 
Transportation Systems community. Several interesting results 
have been obtained since the early 90’s, but the problem is so 
vast and manifold that even today it keeps many persons at 
academic and industrial levels engaged. These researchers are 
focused in the search for more, and more general, approaches 
for road and lane detection, traffic lights and many other 
perturbations on the normal flow of perception from the road 
and its entourage. Perception and navigation are the main two 
components of this huge problem, where the second depends 
largely on the performance of the first. In Portugal, a 
competition for Autonomous Driving was created in 2001. It 
intended to promote the development of solutions for these 
perception and navigation problems. Currently, the competition 
accounts for several challenges and a University project named 
ATLAS has developed a series of robots that have outperformed 
all the competitors for five years in a row. The paper presents 
the main techniques and algorithms that lead to this success and 
formulates the bases to migrate the solutions to real road 
conditions. Perception of road and its features are given the 
main focus. 

I. INTRODUCTION 
UTONOMOUS navigation of cars and other vehicles on 
real roads is perhaps a dream as old as the modern 

automotive industry. Although many interesting results have 
emerged in the last 15 years, no definitive answer exists in 
terms of robust perception and even less in safe and robust 
driving. To promote developments and contributions to near 
the reality to that dream, several groups have devised many 
sorts of activities among students and research communities. 
One of such groups proposed in Portugal, in the late 90’s, a 
competition 0 for autonomous robots where some sort of 
road plunged with obstacles and other perturbations was to 
be traversed intelligently by self-contained machines. The 
Portuguese Robotics Open (ROBOTICA) was then created 
and the competition of Autonomous Driving is now its oldest 
competition, among others created meanwhile. 

The main goal of the competition is to complete two 
rounds of an 8-shaped path simulating a real road (Figure 1), 
although with some controlled parameters such as good line 
definition on the floor. Nonetheless, the challenge is quite 
demanding when details are observed closely. In its last level 
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of complexity, the competition comprises a zebra crossing 
area defining precise stopping areas in case the traffic lights, 
suspended above it, force the stopping. Random generation 
of traffic signals also with random values for their duration 
make the problem demanding for entry level competitors. 
That is however negligible when compared to a tunnel where 
light conditions change dramatically and when the robots 
reach the road maintenance area where an alternative road 
delimiter is used simulating temporary path detours; in that 
case, the orange and white stripes and cones override the 
normal road white lines. Even more challenging is to have, 
above all this, obstacles in unknown positions and, finally, at 
the end of the trial, complete the challenge with the pièce de 
resistance which is a compelling parking area located 
somewhere outside the road track having two places to park 
but one of them randomly occupied by another obstacle. The 
entire challenge requires abundant vision systems and other 
techniques both for perception and navigation. Very few 
robots in the ten editions of the competition have managed to 
complete all the challenges. Being able to cope with these 
many challenges certainly is an indicator that real roads in 
real environments can also be dealt with. The task with real 
roads is obviously more difficult, but the problems share 
principles and methods to reach the solution. 

 Parking area with 
an unknown 

obstacle 

Unknown 
obstacle 

Tunnel 

Road 
maintenance area 

Zebra crossing and 
traffic light panel 

 
Figure 1 – Model of the autonomous driving competition environment. 

The remainder of the paper introduces some related work 
in road perception, and then continues with the techniques 
used by the ATLAS robots, especially in road segmentation 
and its embedded obstacles and accessories. Conclusions and 
perspectives for future work are drawn at the end. 

Since 2004, in seven editions, the ATLAS robots have 
obtained, 2 third places, 3 second places, and 5 first places in 
a row in the Portuguese national competition. 

II. PREVIOUS WORK ON ROAD PERCEPTION 
Several approaches have been attempted in order to solve 

the problem of extracting the road using visual information 
only. There are two separate threads in what road detection 
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is concerned. Road may be detected based on road color 
uniformity, or delimiting lines can be looked up.  

Some authors try to explore morphological operators in 
order to extract the road or lines. Liu et al. make use of 
Canny and Sobel operators to remove shadows from the 
image [5], while Zhang et al. employ Hough Transforms to 
perform line detection [6]. Some others employ neural 
networks. Pomerleau uses neural networks that process a low 
resolution image of a particular area of the road and classify 
the image according to its similarity to several hypothetical 
models of road curvature [3]. The low resolution image is 
extracted from a trapezium, which is positioned vertically 
according to the current vehicle’s speed. The horizontal size 
of the trapezium is decided on top of perspective 
transformation considerations, so that a particular region of 
the image can be remapped to a top view of the road. 
Foedisch et al. [7] also use neural networks to classify a set 
of pixels as “road” or “not road” based on their colour 
similarity to some example pixels taken from sub-windows 
of the image where the road is most likely to be. The 
positioning of such windows is, obviously, critical to the 
systems performance. For each analyzed pixel, the neural 
network’s inputs are the pixels RGB colour (down-sampled) 
and the pixels position in the image. 

In Italy, Bertozzi and Broggi also use perspective 
transformation to obtain a bird’s eye view of the road. In 
more recent years, authors have made use of state of the art 
techniques like directional filters, namely Gabor filters. The 
convolution with these filters extracts several trends of 
macroscopic features which are then accumulated for 
different directions [8]. Intel’s cooperation with Stanford 
University has also resulted in some road navigation state of 
the art techniques. The laser scanner defines a polygon that is 
sure to comprise the nearby road. The color of the pixels 
inside that polygon is then used as a seed for learning and 
modelling clusters of road-colored pixels 0. In the scope of 
the DIPLODOC project, Lombardi et al. have developed a 
model switching architecture that uses pixel color to find the 
most similar model from a finite database [10]. 

III. THE ROBOTS FROM THE ATLAS PROJECT 
To face the challenge posed by the ROBÓTICA 

Autonomous Driving competition, the ATLAS project was 
started in 2003, and besides all the hardware and structural 
issues, the main challenges, still the relevant ones in the 
present time, are the perception of the road and its 
accessories, and navigation based on that perception. Figure 
2 shows the two ATLAS robots: series Atlas-2000 and series 
Atlas-MV. The earliest robots used either a single camera 
with mirrors, or two independent cameras to monitor the 
road. Latest versions use multi-camera images which are 
merged to form wider images. 

For road navigation, the ATLAS robots use two cameras 
with the purpose of obtaining a very wide angle image. 
Cameras are not tightly registered so, in order to merge the 

images from the cameras, image transformations have to be 
accounted for. Furthermore, since each camera possesses 
wide angle lenses, a relevant amount of distortion occurs. At 
first glimpse, the full modelling of both the lenses parameters 
and the perspective transformations would be expected in 
order to obtain a perfect (geometrically accurate) merging of 
the information. However, in a first approach, the authors 
have come to the conclusion that these calibration 
procedures were fairly demanding and could be easily lost 
due to unstable camera physical fixations and other hardware 
issues at the time the system was developed. Based on this 
observation, an approach was attempted where a rough 
image merging would be enough. In fact, image merging is 
required to be accurate only if precise geometrical features 
are to be extracted from the combined image. That is not the 
case on this approach for road navigation. The rough image 
combination suits well if the subsequent road filters are only 
minimally affected by it. Since only a rough combination of 
both images was required by the algorithm, a manual 
calibration of the distortion parameters is performed for each 
camera in order to combine them; this procedure is executed 
offline, therefore without any effect on the efficiency of the 
navigation algorithm. An interactive application was then 
developed to allow this manual calibration and its interface. 
It should be noted that this method is entirely empiric, since 
for more rigorous combinations a more precise perspective 
transformation should also be taken into account. 
Nonetheless, this methodology gave good results [13]. 

In more recent developments, instead of using two fixed 
cameras as in earlier versions, one of the latest ATLAS robot 
is equipped with a multi-camera system mounted atop a pan 
and tilt unit to allow for more complex perception algorithms 
and strategies, such as active vision. The multi-camera 
perception unit includes four cameras and a servo-actuated 
pan and tilt unit, as shown in Figure 4. Two of the cameras, 
Cam0 and Cam1 of Figure 3, are positioned on the far sides 
of the unit, and are equipped with 2.1 mm focal length wide 
angle lenses. They are intended solely for navigation and 
should therefore provide a view of the road’s full width. For 
these two cameras, the supporting structure allows to 
position the following parameters: vergence, torsion about 
the principal axis and distance to the unit’s centre. Cam2 and 
Cam3 add up to define a foveated system. Cam2 is also 
equipped with a wide angle lens. It’s intended to have a wide 
field of view so that it can effectively search for known 
objects of interest. It is also called the peripheral camera. 

   
Figure 2 - Examples of robots from the ATLAS project. Atlas 2009 (left) 
Atlas-MV (right). 
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Aligned on the same vertical axis is Cam3, whose large focal 
distance lens allows the extraction of a high detail view of a 
particular object. This is also called the foveated camera. 
This foveated set-up is intended for future developments. 

For the purpose of navigation and more precise geometric 
evaluation of the environment, each camera undergoes a 
camera distortion correction namely barrel and similar 
intrinsic issues. The procedure uses the classic chessboard 
approach available in several software packages, as in the 
OpenCV libraries (http://opencv.willowgarage.com/wiki) 
used in this project. 

The entire pan-and-tilt unit along with its cameras can be 
described as several kinematics open chains and can be 
modelled using the Denavit-Hartenberg (DH) notation for 
serial open kinematics chains [15], as illustrated in a partial 
model in Figure 3 (left). A complete description of the model 
can be found in [12]. After deriving the model of the 
perception unit, the transformation and merging of the 
camera’s images is then possible. This transformation is 
performed for each camera by mapping image pixels onto 
the ground plane, Z=0. This generates a distribution of the 
input images’ pixels in the ground plane, as depicted in 
Figure 4. However, some pixels of the input images may not 
have their correspondent real point on the ground plane. This 
depends on the camera’s lens vertical opening angle and on 
the current tilt angle. Additional conditions are defined to 
cope with these and other constraints [12]. 

IV. PERCEPTION ON THE ATLAS ROBOTS 
Within the ATLAS project, two major algorithms have 

been devised for road segmentation. One is based on the 
road homogeneity and the existence of at least one border 
line [13], and a second one is based on line extraction from 
perspective corrected images [12]. 

A. Road Homogeneity 
This approach does not seek to extract the road border 

lines but the space between them, which is the actual road to 
navigate in. Border line connectivity is important to obtain 
the limits of the track: having both lines in the image is the 
ideal situation, but one line still allows the partial definition 
of the track and the absence of both lines results in an 
unlimited track (usually of short term effect). The definition 
of a virtual horizontal line limits the upper part of the image 

and completes the plausible area for the vehicle to traverse 
Figure 5. In fact, the lateral lines, the horizon line and the 
bottom of the image form some sort of free space trapezium, 
which is a concept found also in other works [3][8]0. The 
advantage of the process is that with the resulting 
information the issue becomes a matter of forbidden/allowed 
space. The final image holds important information for the 
navigation process since it describes which pixels are inside 
the road and which are not. Furthermore, the pixels on the 
edge of the road may easily report the curvature of the road. 
The area of the road can also be easily calculated, if needed. 
Naturally, some special situations of the road trapezium 
occur and are dealt accordingly [13]. 

B. Lane marker Detection 
Line detection and validation has been used as an 

alternative to the earlier road segmentation algorithms. The 
process takes advantage of the top view of the road obtained 
trough perspective transformation and multi-image merging, 
as described before. The process consists of building up a set 
of line candidates, and then tests some statistical indicators 
against a model of what a line should be. For quick 
comparison, the model is defined based on those same 
statistics according to the values typically found. Further 
details are available in [16]. Examples of line detection 
(highlighted in green) can be seen in Figure 6 and Figure 7. 

C. Obstacle Detection 
In the 2006 edition of the ROBOTICA competition, the 

obstacles were painted in white. The obstacle was detected 
as an integrant part of the line and, therefore, no exceptional 
processing was required to map the obstacle and define the 
new road. In the following editions of the competition, the 
obstacles were made in green colour. The obstacle must then 
be segmented from the background, which was done using 
simple HSV colour filters. However, the segmentation is 
never optimal. The reason for this may be linked to the low 
cost cameras or to the YUV compression during frame 
acquisition. Therefore, a method that can handle imprecise 
colour segmentation had to be devised. This was achieved 
using the assumption that, if not all, at least most of the 
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Figure 3 - Kinematics chain (left) for the “left” part of the Multi-camera 
active perception unit (right). 

 
Figure 4 - A map of the projection of the cameras onto the ground plane. 
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segmented green pixels belong to the object. Bearing this in 
mind, a simple centroid of the segmented pixels provides a 
fair enough indication of where the obstacle is located; it is 
now possible to come to a decision regarding the positioning 
of the obstacle on the road. The rules of the competition 
establish that the object must always be placed on one side 
or the other of the road, never in the middle. In consequence, 
the robot needs only to decide whether an object is present 
and on which side of the road it is. The first part is achieved 
by a fixed threshold for the number of segmented pixels. The 
second part of the problem is not so straightforward because 
one must first compute the position of the robot on the road. 

As discussed before, both road and lane detection is 
performed, producing information regarding the centre of the 
road. Using this information, one can use a simple criterion 
that finds whether the object’s mass centre is to the right or 
left of the line that passes in the robot’s centre (middle 
bottom of image) and the points indicating the middle of the 
road (Figure 6). 

D. Zebra Crossing Detection 
The ATLAS project has developed a couple of algorithms 

for zebra crossing detection. The general idea is to look for a 
pattern similar to the zebra crossing area or some relevant 
part of it. Since the search may become computationally 
demanding, it is necessary to define a delimited region 
(which is the region enclosed by the lane markers) where the 
zebra area is to be looked for. With any of the two 
algorithms mentioned previously, it is easy to distinguish the 
pixels that are inside the road. The zebra crossing area needs 
to be detected by the vision system by means of white blobs 
of pixels. Earlier results on distorted images from the 
cameras [13] did not allow a rigorous template matching 
scheme since the zebra crossing area varies greatly with the 
point of view; for that approach a simple area/perimeter 
(form factor) limit was used. With the undistorted 
perspective image introduced in the ATLAS MV series 
robots, the real geometry of the zebra area can now be 
sought. The technique relies on pattern matching performed 
on low resolution images. A template picture of the zebra 
area is previously taken off-line and then correlated against 
the current image. 

Template matching is known to be an effective pattern 
detection method, but has two limitations: it is sensitive to 

pattern scaling and rotation. In the undistorted perspective 
image, the zebra area size is constant. Nonetheless, it does 
appear rotated in the image when the robot is not properly 
aligned with the road. In this case, the template matching 
would clearly fail. In order to solve this problem, the 
algorithm makes, once again, use of the line detection 
module information. The low resolution image is rotated 
around the robot position, i.e., the bottom centre of the 
image. The angle of rotation is defined by the mean normal 
vector angle of one of the lane markers. Hence, the usage of 
the mean angle does not introduce a significant error. 
Nevertheless, we make use of the line whose normal vectors 
variance is smaller, which is equivalent to take the straightest 
line as reference. In summary, pattern matching is also 
effective when the zebra crossing area appears rotated. 
Figure 7 shows the detection trough template matching with 
previous rotation compensation. 

E. Road Maintenance Area 
One of the most challenging tasks of the ROBOTICA 

competition is to deal with the road maintenance area. This 
area is defined by a set of road maintenance cones, coloured 
orange and white. Because the cones have a white stripe, it is 
not possible to segment them completely in a simple step. As 
a consequence, the road maintenance navigation algorithm 
must be able to cope with partial cone detection. Two 
algorithms have been developed: one that uses the original 
perspective deformed image, and another that takes 
advantage of the geometry corrected top view image of the 
road. The problem is that orange segmentation highlights 
regions of the pins that are close to the road, i.e. the base of 
the pins, but also the top of the cones which appear separated 
since they are at higher heights. Because of this, a simple 
search from left to right, for segmented orange, will not keep 
a geometrically accurate representation of the road when 
regions of the top of the cones are found. Hence, a method 
that discards the top of the cones must be implemented. For 
this, we have used an a priori knowledge stating that the 
robot is always in between the route defined by the cones. 
Taking into account that the robot is always inside the area 
defined by the cones, it calculates a polar transformation of 
the orange segmented pixels, anchored on the assumed robot 
position (the middle bottom of the image). The polar 
representation of the colour mask is shown on Figure 9 (top). 

 
Figure 5 - The original merged image. The segmented road area is overlaid 
in white. 

 
Figure 6 – Obstacle detection based on the mass centre calculation of 
rough colour segmentation. The mass centre is represented by the centre of 
the circle superimposed onto the image. 
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A convex hull of the region defined by the segmented 
pixels in polar space is able to detach the top of the cones. In 
fact, the lower poly line of the convex hull always stops at 
the base of the cones. This phenomenon is due to the fact 
that the projection of the cones onto the image places the 
cones’ top regions further away from the middle bottom part 
of the image (Figure 9, bottom). Despite the fact that it is a 
top view of the road, the statement holds also for images 
without perspective transformation, such as Figure 8. 

In Cartesian space, the lower part of the poly line portrays 
a region unaffected by the top of the cones. This region, 
despite the fact that it is not optimal, is sufficient for low 
speed navigation. This region is depicted as the blue area 
marked on Figure 8.  

A second algorithm was developed to increase navigation 
performance in the road maintenance area, which takes 
advantage of the perspective corrected view of the road 
(Figure 9, bottom). The first objective was to classify the 
segmented orange pixels as belonging to right or left side 
cones. Because of the competition’s road size, images 
showing tight turns occur very often. This poses a problem 
since the left side of the road (or the left side delimiting 
cones) often appears on the right side of the image and vice 
versa. It is imperative to distinguish left from right side 
cones. 

To achieve this, a simple dilation-based algorithm is 
performed. Dilation of the colour segmentation mask is 
performed a fixed number of times. The outcome produces a 
new image with two separate blobs. These blobs result from 
the merging, through dilation, of the colour segmented 
portions of the cones, and provide a good indication of 
which regions of the colour mask belong to which side. Up 
until now, the number of dilations is fixed. The results are 
fairly good since the cones of one side are always closer to 
each other than to the cones on the other side. Considering 
that the cones of each side of the road have the major 
separation in the horizontal direction of the image, an 
appropriate structuring element for dilation can ease the 
merging of regions through a vertical connection and 
encumbers the horizontal connection. For this purpose, a 
rectangular, vertically elongated, structuring element is used 
for dilation. The results produce blobs that are better 
separated, helping to avoid the connection of both sides. The 
final operation is to perform a AND operation between the 
original colour mask and each of the blobs, obtaining a mask 

for the colour segmented pixels of each side of the road. 
Afterwards, a convex hull operation is executed on the 
segmented pixels of each side. Then, the points of the 
convex hull first found by a radial search starting from the 
robot position are stored to define a poly line that portraits 
the delimiters defined by the bases of the cones. Convex hull 
connects the bases of the cones (only a portion of it, of 
course, but then the important line is extracted by the radial 
search) and because of that the top of the cones is discarded, 
enabling an accurate reconstruction of the area delimited by 
the cones. The colour segmentation does not have to be very 
accurate. In fact, it should be strictly tuned since that noise 
(in the sense of segmented orange colour without being so) 
on the inside of the road may disrupt the poly line defined by 
the bases of the cones. Figure 10 (top), shows the convex 
hull obtained for the left side mask of the orange segmented 
pixels, and a schematic of the radial search. 

Figure 10 (bottom) shows the final output of the 
algorithm. The radial search highlighted the portion of the 
convex hull that connects the bases of the cones. 

V. CONCLUSIONS AND FUTURE WORK 
This paper focuses the perception approaches used in the 

ATLAS Robots, which are based entirely on vision 
techniques. The ATLAS robots have shown in the last years, 
during national robotic competitions, that it is possible to 
perform efficient road perception and navigation using low 
cost cameras and systems. The entire set of algorithms 
described to extract the road and other features are processed 
at over 15 Hz in common 1.6 GHz Centrino laptops. These 
techniques have been developed for the competition but can 
be transposed to real road conditions, which is the authors’ 
intention for the near future. The latest version of the 
ATLAS robot makes use of a multi camera active perception 
unit. The apparently more demanding setup is overcome by 
real time dynamic perspective correction and shows up 
several advantages, namely the active perception capabilities 
which will be crucial for tracking moving targets, and also 
the real geometric perception of ground based elements of 
the road, allowing for better pattern matching and size 
dependent feature extraction. These capabilities altogether 
installed on the latest ATLAS robot offer high potential for 
intelligent perception and navigation on roads, not only 

 
Figure 7 – Zebra cross area detection using template matching. 

 
Figure 8 – On the top, a robot’s view from inside the road maintenance 
area. Orange cones segmentation is superimposed as yellow. The blue 
region is obtained after the log-polar space convex hull operation. 
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focusing on road or lane detection, but aiming also at active 
tracking of moving objects while still keeping a calibrated 
view of the road that is being traversed. 
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Figure 9 – Polar representation of the maintenance area's colour mask and 
the convex hull of the segmented pixels (top). Cartesian representation of 
the maintenance area’s colour mask and the transformation of the convex 
hull calculated on the Polar space (bottom). 

 

 
Figure 10 – Convex hull of the blobs obtained trough dilation of the 
orange colour’s segmentation mask (top). Final output of the algorithm, 
where the bases of the cones are marked (bottom). 
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Abstract— Image segmentation for robots requires to be fast,
in order to deal with ever more powerful processors. Moreover, it
is assumed to be robust to environmental changes, such as light
conditions. In this paper we propose the application of a couple of
unsupervised learning algorithms for the estimation of the number
of components and the parameters of a mixture model for image
segmentation. These serve for the unsupervised identification of
multiple different objects in a visual scene, such as for a subsequent
localization and tracking. We compare our previous technique
against the new one. The distinctive aspect of our new approach
is related to a top-down hierarchical search for the number of
components by means of a binary tree decision structure. This
work analyzes both approaches, two previous work of ours, in
terms of applicability to object detection for robotic applications.
Besides, we propose the computational burden evaluation for the
two algorithms.

Index Terms - Robotics, Computer Vision, Object Seg-
mentation, Unsupervised Learning, Self-Adapting Expectation
Maximization

I. I NTRODUCTION

Nowadays, computer vision and image processing are in-
volved in many practical applications. The constant progress
in hardware technologies leads to new computing capabilities,
and therefore to the possibilities of exploiting new techniques.
Image segmentation is a key low level perceptual capability
in many robotics related application, as a support function
for the detection and representation of objects and regions
with similar photometric properties. Several applications in
humanoid robots [1], rescue robots [2], or soccer robots [3]
rely on some sort on image segmentation [4]. Additionally,
many other fields of image analysis depend on the performance
and limitations of existing image segmentation algorithms:
video surveillance, medical imaging and database retrieval are
some examples [5], [6].

A. Related Work

Two main principal approaches for image segmentation are
adopted: Supervised and unsupervised. The latter one is the
one of most practical interest. It may be defined as the task
of segmenting an image in different regions based on some
similarity criterion among each region’s pixels.

Several techniques have been proposed in the literature
for unsupervised learning, from Kohonen maps [7], Growing
Neural gas [8], [9], k-means [10], to Independent component
analysis [11], [12], etc. Particularly successful is the Expecta-
tion Maximization algorithm applied to finite mixture models.
Fitting a mixture model to the distribution of the data is
equivalent, in some applications, to the identification of the
clusters with the mixture components [13].

One of the most widely used distributions is the normal,
or Gaussian, distribution. The normal distribution can be used
to describe, at least approximately, any variable that tends to
cluster around the mean. If data is generated by a mixture of
Gaussians, the clustering problem will reduce to the estimation
of the number of Gaussian components and their parameters.
Expectation-Maximization (EM) algorithm is well known and
attractive approach for learning the parameters of mixture
models [13], [14]. It always converges to a local optimum
[15], especially for the case of Normal mixtures [13], [16].
However, it also presents some drawbacks. For instance, if
requires thea-priori specification of the model order, namely,
the number of components and its results are sensitive to
initialization. The selection of the right number of components
is a critical issue. The more components there are within the
mixture, the better the data fit will be. Unfortunately, increas-
ing the number of components will lead to data overfitting and
to increase in the computational burden. Therefore, finding the
best compromise between precision, generalization and speed
is an essential concern. A common approach to address this
compromise is to try different hypothesis for the number of
components, and then selecting the best model according to
some appropriate model selection criteria.

Different techniques can be used to select the best number
of components in a mixture distribution. These can be divided
into two main classes:off-line andon-line techniques.

The first ones evaluate the best model by executing indepen-
dent runs of the EM algorithm for many different initializa-
tions, and evaluating each estimate with criteria that penalize
complex models (e.g. the Akaike Information Criterion (AIC)
[17], the Schwarz’s Bayesian Information Criterion [18], the
Rissanen Minimum Description Length (MDL) [19], and Wal-
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lace and Freeman Minimum Message Length (MML) [20]).
Al l of these criteria, in order to be effective, have to be eval-
uated for every possible number of models under comparison.
Therefore, it is obvious that, for having a sufficient search
range the complexity goes with the number of tested models
as well as the model parameters.

The second ones start with a fixed set of models and
sequentially adjust their configuration (including the number
of components) based on different evaluation criteria. Pernkopf
and Bouchaffra proposed a Genetic-Based EM Algorithm
capable of learning gaussians mixture models [21]. They
first selected the number of components by means of the
minimum description length (MDL) criterion. A combination
of genetic algorithms with the EM has also been explored.
Simulating annealing has also been explored as a possible
solution for mixture selection, with Ueda and Nakano who
proposed the deterministic annealing (DAEM), in which a
modified posterior probability parametrized bytemperatureis
derived to avoid local maxima [22]. Uedaet Al. proposed
a split-and-merge EM algorithm (SMEM) to alleviate the
problem of local convergence of the EM method [23].

Greedy algorithms take part within the second class of
unsupervised classification techniques. They are characterized
by making the locally optimal choice at each stage with
the hope of finding the global optimum. Applied to the
EM algorithm, they usually start with a single component
(therefore side-stepping the EM initialization problem), and
then increase their number during the computation. At the
time, no precise solution has been posted to address this
drawback. In 2002 Vlassis and Likas introduced a greedy
algorithm for learning Gaussian mixtures [24]. They start with
a single component covering all the data. Then they split an
element and perform the EM locally for optimizing only the
two modified components. Nevertheless, the total complexity
for the global search of the element to be splitO(n2).
Subsequently, Verbeek et al. developed a greedy method to
learn the gaussians mixture model configuration [25]. Their
search for the new components is claimed to takeO(n), while
our recursive search by means of the binary tree onlyO(log n).

B. Our contribution

We want to find a procedure for the unsupervised identi-
fication of multiple different objects in a visual scene, for a
further localization and tracking. Therefore, we first need to
segment the color image in a unsupervised way in order to
detect the different targets and distinguishing them from the
background. Then, we need to identify them. We decided to
use Gaussian mixture models due to their accuracy and general
applicability. Besides, in order to sidestep the shortcoming
of high computational burden together with the need of the
a − priori decision of the number of components, we opted
for a greedy self-organizing approach.

However, greedy algorithms mostly (but not always) fail to
find the globally optimal solution, because they usually do not
operate exhaustively on all the data. Our new technique tries
to overcome this limitation by using a binary tree for deciding

which component has to be replicated in an exhaustive way.
The optimization of the parameters is done with expectation
maximization (EM) and the search for the best number of
parameters is done in a top-down manner, by starting with a
single component and progressively adapting the mixture by
adding new elements according to a binary tree structure. We
compare a previous greedy algorithm we developed in [26],
and then refined in [27], versus our new technique, presented
in [28]. The restriction of the previous approach relies on
the excessive number of input parameters to be tuned before
the computation, and the heuristic stopping criterion. The
latter may cause that more components than those effective
necessary may be employed, resulting in an excessive mixture
complexity and long computation.

C. Outline

In sec. II we introduce the analyzed algorithms. Besides,
in sec. II-F and II-G we propose a computational complexity
analysis. Then, in sec. III we describe our experimental set-up
for testing the validity of our new technique and we compare
our results against our previous alternative. Finally, in sec. V
we conclude.

II. THE FINITE MIXTURE LEARNING ALGORITHMS

In this section we provide a description about the differences
between the two approaches. Since now, we will refer to these
as:

• FASTGMM: The previous approach [27];
• FSAEM: The new algorithm [28].
In the following we present a brief overall description of

both approaches, and a deeper analysis of the adding a new
component process, together with the stopping criterion.

A. FASTGMM Overall Description

The basic idea is to incrementally estimate the mixture
parameters and the number of components simultaneously.
This algorithm starts with a single component and only incre-
ments its number as the optimization procedure progresses.
The number of components is incremented at certain stages
of the optimization procedure but the values of the mixture
parameters are incrementally changed and not reinitialized.

The key issue of our technique is looking whether one or
more Gaussians are not increasing their own likelihood during
optimization.

For this algorithm we need to introduce a state variable
related to the state of the gaussian component:

• Its age, that measures how long the component’s own
likelihood does not increase significantly;

Then, the split process is controlled by the following adaptive
decision thresholds:

• One adaptive thresholdΛTH for determining a significant
increase in likelihood;

• One adaptive thresholdATH for triggering the split
process based on the component’s own age;

• One adaptive thresholdξTH for deciding to split a
gaussian based on its area.
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It is worth noticing that even though we consider three
thresholds to tune, all of them are adaptive, and only require
a coarse initialization.

However, one of the biggest limitations is that this is suitable
only for Gaussian mixtures, and not for generic ones.

B. FSAEM Overall Description

This algorithm starts with a single component. Then, by
following a binary tree structure new classes are added by
means of replicating existing ones, once a time. Subsequently,
our modified EM algorithm is run in order to achieve the
current mixture best configuration [28]. Furthermore, the cost
function is evaluated in order to decide whether keeping or
discarding the current mixture. In the first case, the binary
tree will be updated with the new solution. When a new
mixture element is added, it will become a child together
with the original one. Therefore, within our representation,
its father dies, and only the two children survive. Otherwise,
in the second case (i.e. when the new mixture configuration is
discarded), the previous mixture will be restored as a starting
point for a new component replication, and that node will
never be proposed to have children anymore. Finally, when
there will no node eligible to have children (i.e. when all the
combinations have been tried), the algorithm terminates.

It is worth noticing that this technique can be applied to
any mixture, rather than Gaussian ones, merely.

C. Adding a new mixture class

One the one hand, FASTGMM splits the component with
highest covariance matrix determinant (and therefore that
covering the highest number of data), when this overcome a
threshold. The latter one follows a decreasing law, in order to
avoid stationary situations. However, both the splitting process
itself is ill-posed (there are infinite solutions [23]), and the
chosen decision criterion is arbitrary. Finally, the law leading
the thresholds variation is heuristic.

On the other hand, FSAEM employs a replication process
rather than a splitting procedure. The new component will
be the exact copy of that candidate to be replicated. This
allows to a unique solution, with the only exception of a
variation in the mean of these components (in order to not have
them exactly superimposed, situation not allowing the EM
procedure to escape the current local minimum [28]). Besides,
instead of relying on empirical thresholds for determining the
most suitable component to be replicated, all the classes are
replicated in sequence, in order to exploit all the mixture
combinations possibilities. This is achieved thanks to the
binary tree decision structure, showed in Fig. 1.

D. Model Selection Criterion: Minimum message length
(MML)

Since no merging or annihilating operation ha been envi-
sioned, it is worth being sure about a new component insertion.
FSAEM integrates a derivation of the MML criterion in order
to evaluate whether the new mixture configuration (i.e. that
after the last component replication) provides a better data
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Fig. 1. Binary tree mixture distribution structure example: On the left the
binary tree indexes representation, used as decision structure; on the right the
contents of the binary tree used as look up table. The array correspondent
representation is:[0, 0, 1, 2, 0, 3, 4]. The0 contents are relative to the parents
have been eliminated after creating their children.

description in terms of the MML evaluation. In the affirmative
case, the current mixture configuration is kept, a new replica-
tion is performed following the updated binary tree. Otherwise,
the old mixture configuration is resumed (therefore voiding
the last component insertion). The binary tree is updated in
order to not replicate the same component anymore once the
correspondent mixture has been discarded.

We adopted the minimum message length (MML) criterion
developed in [29], which formulation is:

ϑ̄opt = arg min
ϑ̄

{ −L
(

X |ϑ̄
)

+
N

2

c
∑

i=1

ln
(n · wi

12

)

+
c

2
(N + 1 − ln 12n)

}

(1)

In eq. (1):

• −L
(

X |ϑ̄
)

is the log-likelihood of the whole distribution;
• N is the number of parameters specifying each compo-

nent (e.g. in case of a normal distribution they are the
mean and the covariance matrix, counted as 1 parameter
for each input dimension for the mean and 1 for each
the covariance among each dimension, resulting inN =
d + (d + 1) ∗ d/2);

• c is the number of mixture components;
• n is the number of input data;
• wi is thea-priori class, or component, probability, there-

fore resultingn · wi the number of components of the
classi.

E. Stopping criterion

On the one side, FASTGMM relies on an empirical stopping
criterion. This, together with the splitting procedure may result
in having the best mixture data description.

On the other side, FSAEM stops when all the mixture repli-
cation combinations have been exploited. Besides, the MML
criterion described in sec. II-D ensure that when the insertion
of a new component do not improve the data description, this
is discarded.

F. FASTGMM Computational complexity evaluation

TakingD as the input dimension, the computational burden
of each iteration is:
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• the original EM algorithm takesO (N · D · nc) for each
step, for a total ofO (4 · N · D · nc) operations;

• the algorithm takesO (nc) for evaluating all the single
Gaussians log-likelihood;

• the split operation requiresO (D).
• the others takeO (1).
• the optional procedure of optimizing the selected mixture

takesO (4 · N · D · nc), being the original EM.
Therefore, the original EM algorithm takes:

• O (4 · N · D · nc), while our algorithm adds
O (D · nc) on the whole, or O (4 · N · D · nc),
giving rise to O (4 · N · D · nc) + O (D · nc) =
O (4 · N · D · nc + D · nc) = (nc · D · (4N + 1)) in the
first case;

• 2 · O (4 · N · D · nc) + O (D · nc) =
O (8 · N · D · nc + D · nc) = (nc · D · (8N + 1)) in
the second case, with the optimization procedure.

G. FSAEM Computational complexity evaluation

The computational burden of each iteration of the algorithm
is:

1. The original EM algorithm takesO(k · D · nc) for the
whole mixture log-likelihood evaluation,O(k ·D ·nc) for
the E-step, and approximatively the same amount for the
M-step, andO(nc) for the prior re-estimation, therefore
resulting inO(k · D · (nc + 1)) for each step;

2. The binary tree, if complete, takesO(log nc) for the
insertion, the selection, and the removal operation.

3. Our algorithm takesO(nc) for evaluating all the com-
ponents possible ill-conditioning (this would result in
evaluating the covariance matrix determinants in case of
Gaussian components, which requiresO(D!) addition-
ally, and anotherO(D) for replicating along all the input
dimensions whether necessary);

4. Our replication operation requiresO(D!) for the SVD
decomposition, plus otherO(nc) for the components
reallocation.

This gives rise to the total computation:O(k ·D ·(nc+1))+
O(log nc)+O(nc)+O(D!)+O(D)+O(D!)+O(nc)+O(1) =
O(k · (D + 1) · (nc + 3) + log nc) + 2O(D!)).

Considering that usuallyD << k and nc << k, we
can assume that the computational complexity does not differ
considerably between the general case and the application to
the mixtures of Gaussians. Therefore, we assume that the total
computational burden goes withO(k ·D · (nc + 1) + log nc).

III. EXPERIMENTS

Due to its robotic application, we tested our algorithm on
camera images taken from our robotic platform, the iCub. The
iCub cameras are two DragonFly with VGA resolution and 30
fps speed. The acquired images have a resolution of320x240.
We will segment these images by means both algorithms,
in order to compare them both in terms of accuracy and,
processing speed.

We segmented the images as 5-dimensional input in the
(R,G,B) space and (x,y), i.e. a generic input point was of kind:

p ∈ (R, G, B, x, y). Then, we applied a simple Gaussian blur
and the connected component labeling.

The color image segmentation results are shown in Fig.
III. We highlight the blob findings, centering them on their
mean and surrounded by their covariance matrix (represented
as an ellipse in 2D, green for the binary images and red for
the color ones). Input(1), (2), (3) have been chosen to have
a considerably lower light contrast than the last two ones,
(4), (5). For each row, the first three images on the left, for
each column, are obtained with the FASTGMM algorithm,
while the other three on the right with the FSAEM approach.
Here, the original image, the mixture learning segmented
image, and the connected component resultant image are
shown, respectively.

We made the same experiments with the same input images
both with theRGB color segmentation and theHSV one.
Then, we also show the results for the same images in the
(H, S, V, x, y) representation in Fig. IV.

Finally, we also measure the elapsed time of both algo-
rithms. This has been performed by means of thetime profile
matlab function. However, although this is claimed to be
not sensitive to the other running applications (it counts the
number of float operations), we experimented that this is
not true, indeed. Therefore, this test cannot be considered as
precise ad exhaustive, but indicative, only.

IV. DISCUSSION

The accuracy of the image segmentation greatly depends on
the number of employed mixture components. The higher it is,
the more accurate the image reconstruction will be. However,
using too many components may lead to an overfitting of
the input set, together with an excessive increase of the
computational burden. Therefore, finding thebest compromise
is a must. With FSAEM thebest compromise is decided by
the MML criterion of eq. (1).

In tab. I the results of FASTGMM and FSAEM applied
to the selected images with theRGB color segmentation are
shown, while in tab. II there are the results for theHSV color
space. In each table we report:

• The number of detected components;
• The actual number of components, i.e. that of the gener-

ation mixture;
• The number of total iterations;
• The elapsed time (this is relative to the image segmenta-

tion only, and not to the connected component labeling);
• The percentage difference in time for the new algo-

rithm (T imeFSAEM) with respect to the old formulation
(T imeFSAEM), evaluated asTimeF SAEM−TimeF SAEM

TimeF SAEM
·

100;
• The final log-likelihood;
• The percentage difference in final log-likelihood for the

new algorithm versus the previous approach.

A. RGB versusHSV color space

Comparing the results shown in in Fig. 2 and in Fig. 3 it
can be seen that generally both algorithm perform better under
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Fig. 2. Image segmentation in theRGB color space. FASTGMM results are shown on the left, while FSAEM outcomes are represented on the right. For
each image, there is a subset composed by the original image, the color image reconstruction, and the binary image labeled with the connected components,
respectively. Each image contains the objects of interest highlighted in red for the color output, and green for the binary one superimposed. The objects have
been marked with their mean and covariance, represented as a regular ellipse in 2D, obtained with the connected components labeling.

RGB Color Segmentation Results

Image number Algorithm
Detected number of Number Elapsed Percentage time Final Percentage difference

Gaussian components of iterations Time [s] difference log-likelihood on log-likelihood

(1) FASTGMM 2 38 1.244413 -37.05064155 -278959.4334 -55.54316696
FSAEM 2 26 1.705476 -433902.3373

(2) FASTGMM 3 21 0.933944 -129.1852616 -313336.7632 -12.9245556
FSAEM 2 38 2.140462 -353834.1474

(3) FASTGMM 2 62 2.244048 -101.9897524 -285480.1774 -54.44871057FSAEM 2 121 4.532747 -440920.453

(4)
FASTGMM 11 332 46.743716

95.54896534
-403884.4389

-2.432889246FSAEM 3 31 2.080579 -413710.5

(5) FASTGMM 11 285 34.017004 82.4117315 -387677.3402 -4.231222296
FSAEM 4 106 5.983002 -404080.8302

TABLE I

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES. SEGMENTATION PERFORMED IN THERGB COLOR SPACE.

the HSV color segmentation than theRGB one. It is well-
known that theHSV representation is more robust to light
changes, for instance. Images1, 4, and5 are better segmented
in terms of number of effective objects detected. Specifically,
input 3 gives rise to better results for the FSAEM approach,
while resulting less precise with the FASTGMM segmentation.
However, image2 is confused for both algorithms within the
HSV color space. Besides, image4 is better segmented by
FASTGMM in both color spaces. Finally, it is wort noticing
that segmenting withinHSV color space requires less itera-

tions.

Comparing the segmented images, it may seem at a first
glance that FASTGMM performs better than FSAEM. This is
because generally FSAEM uses less mixture components for
representing the image (this is clear both in Fig. 2 and in Fig. 3,
where the FSAEM reconstructed images - the middle column
on the right set - are less precise). However, the final results
in terms of object recognition may seem similar. Nevertheless,
FSAEM is capable of extracting the important features as well
as FASTGMM, while requiring less computational resources.
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Fig. 3. Image segmentation in theHSV color space. FASTGMM results are shown on the left, while FSAEM outcomes are represented on the right. The
input images are the same as in Fig. III, and so are the output subsets organization. As for the images in the previous figure, the recognized objects of interests
have been highlighted and superimposed to the original pictures.

HSV Color Segmentation Results

Image number Algorithm Detected number of Number Elapsed Percentage time Final Percentage difference
Gaussian components of iterations Time [s] difference log-likelihood on log-likelihood

(1) FASTGMM 2 25 0.755909 -171.7325763 -338069.989677 -33.18992954FSAEM 2 48 2.054051 -450275.181

(2)
FASTGMM 3 22 0.877972

-288.2384632
-340969.8623

-17.78399023FSAEM 2 76 3.408625 -401607.9093

(3)
FASTGMM 2 25 0.754844

-117.6407311
-352858.824

-29.54999667FSAEM 2 33 1.642848 -457128.5947

(4) FASTGMM 7 80 6.484346 0.1370223 -455537.6481 -3.387910601
FSAEM 4 117 6.475461 -470970.8564

(5) FASTGMM 10 274 48.567681 93.45860059 -435224.6992 -2.347807229FSAEM 3 56 3.177006 -445442.9361

TABLE II

EXPERIMENTAL RESULTS ON REAL ROBOTIC IMAGES. SEGMENTATION PERFORMED IN THEHSV COLOR SPACE.

B. Log-Likelihood

Fig. 4 shows the final log-likelihood of both approaches.
Here it is possible to see when the FASTGMM or FSAEM add
a component, i.e. corresponding to the spikes that lower the
curve. Then, when the log-likelihood does not increase any-
more significantly the FASTGMM computation stops, while
FSAEM stops when there are no more components to be
replicated.

C. Cost Function

Finally, we provide the cost function evolution of the MML
information criterion as function of the number of components
for the FSAEM algorithm (FASTGMM do not provide an
information criterion). Fig. 5 shows a couple of examples,
namely those of the image no. 4 and, both present in Fig. 2
and in Fig. 3.

D. Elapsed time

Generally FSAEM performs faster than FASTGMM. The
results in tab. I and in tab. II demonstrate that generally
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Fig. 4. The final log-likelihood evolution as function of the number of iterations of two different kinds of input data used within the experiments: The image
(4) - (a) FASTGMM and (b) FSAEM, and the image (5) - (c) FASTGMM and (d) FSAEM.
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Fig. 5. The cost function evolution as function of the number of components of two different kinds of input data used within the experiments for the FSAEM
algorithm: (a) The image (4), (b) and the image (5).

FSAEM runs faster. Indeed, for the first three images the
elapsed time can be considered comparable, if not double for
FSAEM with respect to FASTGMM. Nevertheless, the elapsed
time is so low that it makes this comparison not accurate. As
a confirmation the last two images,4 and 5, that require a
longer computation, advantage FSAEM.

Our explanation relies both on the splitting procedure and
the stopping criterion, which are more heuristic in FAST-
GMM. The FSAEM replication process, that exploit all the
mixture classes by means of the binary tree, may be the
reason for the slower computation with the first three images.
However, this also provides a better accuracy in the choice of
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the component to be replicated, and this in long term gives rise
to a fewer EM iterations, and then to a lower elapsed time.

Moreover, FSAEM does not depend on the FASTGMM
heuristic parameters and thresholds.

Finally, it can be argued that the approaches take always
more than 750 ms to process each image. In a robotics
framework, this time could be excessively high (it is near
to 1-1.2 fps) and it could be a source of security problems.
However, the algorithms have been implemented under Matlab
herein, which is a interpreted language rather than C++, which
is a compiled one. This means that the first one will result
much slower than the second one. Generally, and this is for the
iCub repository software, for this reason robotics applications
are written in C/C++, and not in Matlab. We choose the latter
for a sake of practicality.

V. CONCLUSION

In this paper we compared two unsupervised algorithms
that on-line learns a finite mixture model from multivariate
data, presented in a couple of previous work of ours. We
briefly summarized the algorithms, with respect to their more
salient characteristics. Besides, we also presented an accurate
computational complexity analysis of both approaches. Finally,
we discuss our results, arguing for a more general validity of
the more recent approach.
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Abstract—Object perception is a key feature in order to make
mobile robots able to perform high-level tasks. However, research
aimed at addressing the constraints and limitations encountered
in a mobile robotics scenario, like low image resolution, motion
blur or tight computational constraints, is still very scarce. In
order to facilitate future research in this direction, in this work
we present an object detection and recognition dataset acquired
using a mobile robotic platform. As a baseline for the dataset, we
evaluated the cascade of weak classifiers object detection method
from Viola and Jones.

I. INTRODUCTION

Currently there is a big push towards semantics and higher
level cognitive capabilities in robotics research. One central
requirement towards these capabilities is to be able to identify
higher level features like objects, doors, etc. For example,
in [1], the authors investigate underlying representations of
spatial cognition for autonomous robots. Although not specif-
ically addressed in that work, object perception is an essential
component that the authors reported to be the most limiting
factor.

Although different modalities of perception (e.g. laser
range-finder, color camera, haptics) can be used, in this work
we focus on passive vision, as it is interesting for several
reasons like an affordable cost, passive and, thus, low power
consuming, compatibility with human environments, richness
of perceived information or usable both indoors and outdoors.

Recently several methods have been quite successful in par-
ticular instances of the problem, such as detecting frontal faces
or cars, or in datasets that concentrate on a particular issue
(e.g. classification in the Caltech-101 [2] dataset). However
in more challenging datasets like the detection competition of
the Pascal VOC [3] the methods presented achieved a lower
accuracy. This low performance is not surprising, since object
recognition in real scenes is one of the most challenging
problems in computer vision [4]. The visual appearance of
objects can change enormously due to different viewpoints, oc-
clusions, illumination variations or sensor noise. Furthermore,
objects are not presented alone to the vision system, but they
are immersed in an environment with other elements, which
clutter the scene and make recognition more complicated. In a

mobile robotics scenario a new challenge is added to the list:
computational complexity. In a dynamic world, information
about the objects in the scene can become obsolete even before
it is ready to be used if the recognition algorithm is not
fast enough. Despite the importance of the problem, very few
initiatives, have started addressing it; exceptional examples are
the Semantic Robot Vision Challenge1 or, very recently, the
Solutions in Perception Challenge2. Nevertheless the above
competitions concentrate more in what can be achieved with
current state of the art techniques than in highlighting open
problems.

Besides these competitions, we are not aware of any pub-
licly available dataset where the particular problems of mobile
robotics are well represented. To help improve this situation,
we have created the IIIA30 dataset, which consists of several
sequences acquired navigating with a mobile robot, as well
as manually generated ground truth bounding box annotations
for 29 different objects.

Moreover, the problems encountered in mobile robotics and
embodied in this dataset are very similar to those found in
mobile computing, a currently very relevant area of research
where low processing power, limited storage space and bad
image quality are the rule rather than the exception.

The rest of the paper is divided as follows. First, the IIIA30
dataset and the performance metrics we recommend for it are
described in Section II. Next, the dataset is evaluated using the
well known cascade of weak classifiers method from Viola and
Jones in Section III. Finally, in Section IV, the conclusions are
presented.

II. IIIA30 DATASET FOR MOBILE ROBOT OBJECT
DETECTION

We contribute the IIIA30 dataset3, that consists of three
sequences (IIIA30-1 to IIIA30-3) of different length acquired
at approximately ten frames per second by our mobile robot
while navigating at approximately 50 cm/s in a laboratory type
environment. These sequences are intended to be used as test

1http://www.semantic-robot-vision-challenge.org/
2http://pr.willowgarage.com/wiki/SolutionsInPerceptionChallenge
3http://www.iiia.csic.es/∼aramisa/iiia30.html
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data to evaluate object detection methods in realistic robot
vision conditions in an office type environment.

The camera mounted in the robot is a Sony DFW-VL500
and the image size is standard VGA resolution (i.e. 640×480
pixels). Figure 1 shows some example images with ground
truth annotations, and Figure 2 the robotic platform used to
acquire the sequences. The environment has not been modified
in any way and the object instances in the test images are
affected by lightning changes, blur caused by the motion of
the robot, occlusion and large viewpoint and scale changes.
Since the objective was to deal with a non-trivial multiclass
problem, a total of 30 categories (29 objects and background)
that appear in the sequences have been considered. The objects
have a large range of sizes, and cover a wide range of
appearance characteristics: some are textured and flat, like the
posters, while others are textureless and only defined by its
shape.

Since for most object recognition methods the training stage
is performed offline, using more training data does not affect
the frame rate of the system at test time. As a consequence, it is
natural to try to improve the accuracy by using additional data
for training, either downloading it from online repositories or
acquiring it manually. The total number of frames is 567 with
2448 annotated objects, that break down as appears in Table
I. The average window size are 101.8 × 133.3 pixels, with a
std of 75.4× 87.3.

In order to evaluate the influence of additional, good quality,
training data, twenty high resolution images and a video were
taken with a standard digital camera for each considered object
category. Figure 3.a shows the good quality training images for
all the object categories, and 3.b shows some cropped object
instances from the test images. Of course, it is also equally
possible to explore the case of bad quality in both testing
and training data by using one of the sequences for training
an testing in the remaining two. In order to increase the

Fig. 2. Robotic platform used in the experiments.

Object # Avg area
± Std

Object # Avg area
± Std

Grey
battery

66 4414 ±
3166

Monitor 2 98 23056±
11013

Red battery 307 4025 ±
5696

Monitor 3 78 8041 ±
4166

Bicycle 71 69830±
50002

Orbit box 88 2774 ±
1527

Ponce book 85 6877 ±
4016

Dentifrice 87 2524 ±
1332

Hartley
book

87 7483 ±
6880

Poster CMPI 42 21108±
10759

Calendar 55 6265 ±
3105

Phone 94 7360 ±
3714

Chair 1 112 46828±
21795

Poster Mys-
trands

73 6233 ±
8189

Chair 2 94 39549±
31035

Poster spices 96 17843±
10850

Chair 3 91 46731±
26653

Rack 89 31467±
12540

Charger 19 10051±
5481

Red cup 63 3815 ±
1472

Cube 1 28 11660±
10473

Stapler 82 5371 ±
3432

Cube 2 18 8152 ±
3895

Umbrella 92 13761±
6996

Cube 3 34 11778±
3404

Window 211 39337±
21453

Extinguisher 30 2312 ±
472

Wine bottle 80 3377 ±
1715

Monitor 1 78 14253±
8226

TABLE I
NUMBER OF INSTANCES AND AVERAGE AREA (IN PIXELS) OF THE

OBJECTS IN THE IIIA30 DATASET.

autonomy of robots in the future, it is highly desirable to have
perception algorithms capable of autonomously detecting new
object types and learning to recognize them in an unsupervised
way. However, this is not what we aim at with the present
dataset, since these approaches will possibly need a much
larger stream of data than what is available here.

The ground truth information, necessary to evaluate the
object detection methods, has been manually generated by
annotating with a bounding box each occurrence of an object
in each frame of the video sequences, along with its particular
image characteristics (e.g. blurred, occluded...).

Although this dataset is of the same-object recognition type,
the bad image quality makes it significantly more difficult than
most of the other similar datasets.

In order to evaluate the performance of the methods we
recommend several standard metrics that are briefly explained
next. Precision is defined as the ratio of true positives among
all the positively labeled examples, and reflects how accurate
our classifier is.

Pre =
TruePositives

FalsePositives+ TruePositives
(1)

Recall measures the percentage of true positives that our
classifier has been able to label as such. Namely,

Rec =
TruePositives

FalseNegatives+ TruePositives
(2)
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Fig. 1. Four example images of a sequence from the IIIA30 dataset. The top-left one is affected by typical motion blur, which may make detection of the
present objects more difficult. Superimposed ground truth bounding boxes can be seen in the bottom-left one.

When it is equally important to perform well in both metrics,
we also considered the f–Measure metric:

f −measure = 2 · Precision ·Recall
Precision+Recall

(3)

This measure assigns a single score to an operating point of
our classifier weighting equally precision and recall, and is
also known as f1–measure or balanced f–score. If the costs
of a false positive and a false negative are asymmetric, the
general f–measure can be used by adjusting the β parameter:

fg −measure =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(4)

In the object detection experiments, we have used the Pascal
VOC object detection criterion [3] to determine if a detection
hypothesis is a false or a true positive. In brief, to consider
an object as a true positive, the bounding boxes of the ground
truth and the detected instance must have a ratio of overlap

equal or greater than 50% according to the following equation:

BBgt ∩BBdetected

BBgt ∪BBdetected
≥ 0.5 (5)

where BBgt and BBdetected stand for the ground truth and
detected object bounding box respectively. For objects marked
as occluded only the visible part has been annotated in the
ground truth. Since the type of annotation is not compatible
with the output of algorithms that estimate the pose of the
whole object from the visible part (like the SIFT object
recognition method [5]), for the case of objects marked as
occluded, we have modified the above formula in the following
way:

BBgt ∩BBdetected

BBgt
≥ 0.5 (6)

As can be seen in the previous equation, it is only required
that the detected object bounding box overlaps 50% of the
ground truth bounding box. Another option to deal with
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(a) (b)

Fig. 3. (a) Training images for the IIIA30 dataset. (b) Cropped instances of objects from the test images.

Training Set

Weak Classifier
Cascade Training

For every region

Final 
hypothesis

 Test Image

Filtering with
Cascade of
Classifiers

- Training Set Size
- Image Resolution

Sliding Window
Segmentation

Classifier
Cascade

Fig. 4. Diagram of the Viola and Jones Cascade of Weak Classifiers method,
with tests shown as purple boxes. Orange boxes refer to steps of the method
and green to input/output of the algorithm.

the occluded objects problem could be modifying the object
detection algorithm to restrict the predicted bounding box to
the part of the object that is believed to be visible, although
that would arise other theoretical and technical difficulties.

III. BASELINE RESULTS

The cascade of weak classifiers proposed by Viola and
Jones [6] is a commonly used object recognition method
because of its good performance and low computational cost.
A diagram of the steps of the method and the tests conducted
can be seen in Figure 4. This method constructs a cascade of
simple classifiers (i.e. simple Haar-like features in a certain
position inside a bounding box) using a learning algorithm
based on AdaBoost. Speed was of primary importance to the

authors of [6], and therefore every step of the algorithm was
designed with efficiency in mind. The method uses rectangular
Haar-like features as input from the image computed using
Integral Images, which makes it a constant time operation
regardless of the scale or type of feature. Then, a learning
process that selects the most discriminative features constructs
a cascade where each node is a filter that evaluates the presence
of a single Haar-like feature with a given scale at a certain
position in the selected region. The most discriminative filters
are selected to be in the first stages of the cascade to discard
windows not having the object of interest as soon as possible.
At classification time, the image is explored using sliding
windows. However, thanks to the cascade structure of the
classifier it is only at interesting areas where processor time
is really spent.

Notwithstanding its well known advantages, this approach
suffers from significant limitations. The most important one
being the amount of data required to train a competent
classifier for a given class. Usually hundreds of positive and
negative examples are required (e.g. in [7] 5000 positive
examples, derived using random transformations from 1000
original training images, and 3000 negative examples where
used for the task of frontal face recognition). Another known
drawback is that a fixed aspect ratio of the objects is assumed
with this method, that may not be constant for certain classes
of objects (e.g. cars). Another drawback is the difficulty of
generalizing the approach above 10 objects at a time [8].
Finally, the tolerance of the method to changes in the point of
view is limited to about 20◦. In spite of these limitations, the
Viola and Jones object detector has had remarkable success
and is widely used, especially for the tasks of car and frontal
face detection.

Since the publication of the original work by Viola and
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Object Recall Prec Object Recall Prec
Grey battery 0.0 0.0 Monitor 2 0.14 0.14
Red battery 0.28 0.02 Monitor 3 0.03 0.01

Bicycle 0.46 0.07 Orbit box 0.03 0.01
Ponce book 0.0 0.0 Dentifrice 0.0 0.0

Hartley book 0.03 0.01 Poster CMPI 0.17 0.15
Calendar 0.19 0.01 Phone 0.0 0.0

Chair 1 0.11 0.22 Poster Mystrands 0.36 0.27
Chair 2 0.71 0.05 Poster spices 0.46 0.06
Chair 3 0.0 0.0 Rack 0.0 0.0
Charger 0.0 0.0 Red cup 0.0 0.0
Cube 1 0.0 0.0 Stapler 0.03 0.01
Cube 2 0.0 0.0 Umbrella 0.03 0.02
Cube 3 0.0 0.0 Window 0.36 0.2

Extinguisher 0.0 0.0 Wine bottle 0.0 0.0
Monitor 1 0.0 0.0

TABLE II
RECALL AND PRECISION VALUES OBTAINED TRAINING THE VIOLA &

JONES OBJECT DETECTOR USING IMAGES EXTRACTED FROM THE
IIIA30-3 SEQUENCE AND EVALUATING IN SEQUENCES IIIA30-1 AND

IIIA30-2.

Jones, many improvements to the method have appeared, for
example to address the case of multi-view object detection [9],
[10]. In this work the original method has been evaluated
using a publicly available implementation4. We selected the
best parameters for the method among the available ones via
cross-validation.

Training Set Size and Image Quality: As previously
mentioned, one of the most important limitations of the
Viola and Jones object recognition method is the amount and
quality of the training data. In this work we have evaluated
three different training sets. The first one consists of images
extracted using the ground truth bounding boxes from the
sequence IIIA30-3. The second one consists of 20 good quality
training images per object type, and additional synthetic views
automatically generated by applying projective transformation
to these images. Finally, the third training set is a mix between
good quality images extracted from videos recorded with a
digital camera (for 21 objects, between 700 and 1200 manually
segmented images per object), and a single training image plus
1000 new synthetic views (for 8 objects).

a) Training data from robot sequences: The training set
used for the first test was assembled using images from the
IIIA sequences. Consequently, the images were both of low
quality and low resolution, and of only between 50 and 70
images for each type of object were available. In Table II the
results obtained applying the trained classifiers to sequences
IIIA30-1 and IIIA30-2 are shown. As can be seen in the
table, the Viola and Jones classifier is able to find only some
instances of 11 out of the 29 object categories. This poor
performance is expected due to the limited amount and bad
quality of the training data.

b) One good quality image and synthetic new views:
Table III shows the results obtained with twenty good quality
training images, but further enhancing the set by synthetically
generating a thousand extra images for each training sample.
As it can be seen, the usage of high quality images and the

4We have used the implementation that comes with the OpenCV library:
http://opencv.willowgarage.com/wiki/

Object Recall Prec Object Recall Prec
Grey battery 0.01 0.02 Monitor 2 0.41 0.20
Red battery 0.08 0.04 Monitor 3 0.40 0.18

Bicycle 0.01 0.10 Orbit box 0.10 0.16
Ponce book 0.08 0.31 Dentifrice 0.01 0.03

Hartley book 0.04 0.08 Poster CMPI 0.10 0.05
Calendar 0.11 0.27 Phone 0.07 0.08

Chair 1 0.02 0.30 Poster Mystrands 0.71 0.12
Chair 2 0.01 0.34 Poster spices 0.05 0.05
Chair 3 0.02 0.05 Rack 0.06 0.55
Charger 0.0 0.08 Red cup 0.01 0.05
Cube 1 0.06 0.21 Stapler 0.02 0.20
Cube 2 0.0 0.56 Umbrella 0.05 0.58
Cube 3 0.03 0.24 Window 0.10 0.08

Extinguisher 0.09 0.13 Wine bottle 0.03 0.32
Monitor 1 0.02 0.01

TABLE III
RECALL AND PRECISION VALUES FOR EACH OBJECT CATEGORY FOR THE
VIOLA AND JONES OBJECT DETECTOR WHEN USING A TRAINING SET OF

SEVERAL GOOD QUALITY IMAGES PER OBJECT AND WITH
SYNTHETICALLY GENERATED IMAGES.

synthetic views significantly improved the results with respect
to the first training set. Most of the objects are found at least a
few times, and the precision in particular improved more than
10% with this new training set.

c) Large and good quality training set: Finally, Table IV
shows the results obtained using the third training set, which
consisted of hundreds of good quality images extracted from
video recordings done with a conventional camera. The usage
of additional training data clearly improved both recall and
precision by more than 6%.

One known drawback of the Viola and Jones cascade of
classifiers is its inability to handle partial occlusions of objects.
This is also observed for the IIIA30 dataset in Table IV in the
columns that list separately the precision and recall for the
partially occluded and the non-occluded object instances. In
contrast, blurring and illumination variations did not affect per-
formance significantly. Regarding the object types, (textured,
untextured and repetitively textured) textured objects obtained
an overall recall of 26% and precision of 33%, similar to that
of repetitively textured objects (24% recall and 36% precision).
Finally, untextured objects obtained 14% of recall and 19%
precision.

The performance on the posters is surprisingly low, as they
are usually considered “easy” objects. The most probable
explanation is the large changes in point of view that the
posters suffer through the video sequences. The time necessary
to apply the classifiers for all the classes to one test image is
728 ms on average in a Pentium IV computer using a single
core.

IV. CONCLUSIONS

We have presented a publicly available and hard object
detection dataset acquired with a mobile robot, that faithfully
represents the typical problems encountered in mobile robotics
and mobile computing in general (i.e. low resolution, motion
blur, etc.). The dataset contains three sequences of varying
length, with bounding box annotations for 29 challenging
object types, as well as good quality training images.
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All Non-Occluded Occluded
Object Recall Prec Recall Prec Recall Prec

Grey battery 0.36 0.24 0.41 0.24 0.0 0.0
Red battery 0.37 0.82 0.44 0.82 0.0 0.0

Bicycle 0.0 0.0 0.0 0.0 0.0 0.0
Ponce book 0.81 0.88 0.86 0.86 0.25 0.02

Hartley book 0.66 0.94 0.70 0.94 0.0 0.0
Calendar* 0.33 0.08 0.38 0.08 0.0 0.0

Chair 1 0.0 0.0 0.0 0.0 0.0 0.0
Chair 2* 0.0 0.0 0.0 0.0 0.0 0.0
Chair 3 0.0 0.0 0.0 0.0 0.0 0.0
Charger 0.12 0.08 0.12 0.08 0.0 0.0
Cube 1 0.22 0.43 0.23 0.29 0.2 0.15
Cube 2 0.23 0.11 0.20 0.09 0.34 0.03
Cube 3 0.28 0.53 0.37 0.48 0.09 0.06

Extinguisher 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 1* 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 2* 0.23 0.57 0.39 0.57 0.0 0.0
Monitor 3* 0.04 0.13 0.05 0.13 0.0 0.0
Orbit box* 0.15 0.03 0.17 0.03 0.0 0.0
Dentifrice 0.0 0.0 0.0 0.0 0.0 0.0

Poster CMPI 0.11 0.34 0.19 0.34 0.0 0.0
Phone 0.05 0.09 0.0 0.0 0.3 0.09

Poster Mystrands 0.0 0.0 0.0 0.0 0.0 0.0
Poster spices 0.04 0.38 0.12 0.38 0.0 0.0

Rack 0.0 0.0 0.0 0.0 0.0 0.0
Red cup 0.89 0.89 0.89 0.89 0.0 0.0

Stapler 0.24 0.21 0.24 0.21 0.0 0.0
Umbrella 0.0 0.0 0.0 0.0 0.0 0.0
Window 0.03 0.40 0.10 0.40 0.0 0.0

Wine bottle* 0.10 0.06 0.10 0.06 0.0 0.0

TABLE IV
RECALL AND PRECISION VALUES FOR EACH OBJECT CATEGORY USING

THE VIOLA & JONES OBJECT DETECTOR AND THE THIRD TRAINING SET
DESCRIBED . WHEN WE DECOMPOSE THE PRECISION-RECALL VALUES

FOR OCCLUDED AND NON-OCCLUDED OBJECTS, RESULTS SHOWS A
PERFORMANCE DROP FOR OCCLUDED OBJECTS. THE ASTERISK MARK

DENOTES OBJECTS TRAINED FROM SYNTHETIC IMAGES.

In order to set a baseline for future evaluations, we have
run the Viola and Jones Cascade of classifiers object detector
on the three sequences. This study is part of a larger work
evaluating three state of the art object detectors suitable for
mobile robotics [11]: the SIFT object recognition system [5],
the Vocabulary Tree method [12] and the Viola and Jones
Cascade of Classifiers method [6].

Despite the use of very simple image features, the Viola and
Jones Cascade of classifiers attains a good level of recall for
several objects in a low runtime. Its main drawbacks are the
large (in comparison with other techniques) training dataset
required to obtain a good performance level, and the limited
robustness to changes in the point of view and occlusions of
the method, as well as a significant number of false positives
that have to be filtered out in later stages. Furthermore, some
theoretically “easy” objects, such as the posters, proved to be
troublesome to the Viola and Jones method. This is probably
due to overfitting to some particular view, or to too much
variability of the very rich Haar feature distribution when
changing the point of view, where the method was unable
to find any recognizable regular pattern.

Nevertheless, the idea of a boosted cascade of weak classi-
fiers is not limited to the very fast but simple Haar features,
but any kind of classifier can be used for that matter. A
very interesting alternative is using linear SVMs as weak
classifiers, since it allows to add a non-linear layer to an

already efficient linear classifier. Such idea has been already
successfully applied in a few cases [13], [14], and we believe
it is a very interesting line to investigate.
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Optimizing a Humanoid Robot Skill

Luı́s Rei 1, Luı́s Paulo Reis 1,2 and Nuno Lau 3,4

Abstract— Controlling a humanoid robot with a large num-
ber of joints and thus, degrees of freedom, presents a complex
problem that requires knowledge in multiple fields, including
biology, mechanics, physics, electronics and computer engineer-
ing. The challenge of making a humanoid robot play soccer
adopted by the RoboCup initiative, a task that was created
specifically for humans, is ideal for testing the performance
of the robot’s motor skills. This work aims to improve the
performance of these skills by applying to them an automated
optimization process. The robot is the simulated RoboCup 3D
agent, a simulated NAO robot, implemented by the FCPor-
tugal3D team. Several different optimization algorithms, in
particular Hill Climbing, Simulated Annealing, Tabu Search
and Genetic Algorithms are adapted to this problem, used
and compared in the optimization of a particular skill of
the FCPortugal agent. Furthermore, the skill optimized, which
allows the robot to get up after falling on its front, is also
compared to the original, unoptimized, skill as well as to those of
other teams participating in the RoboCup simulated 3D league.
The achieved results are good, providing skill that performs
considerably better than the original skill.

I. INTRODUCTION

The RoboCup international competition uses soccer as a
standard problem to foster research in the fields of artificial
intelligence and robotics [1]. FC Portugal team project was
conceived as an effort to create intelligent players, capable of
thinking like real soccer players and behave like a real soccer
team [2] competing in the RoboCup simulation leagues. The
3D humanoid soccer simulation league was created in order
to promote research in the necessary techniques in order to
make humanoid robots play soccer. The topics of research
include physics, biology, control theory and machine learning
with the aim of developing stable biped skills such as walk,
turn, get up and kick. The result of this kind of research
may be extended to other domains, such as the use on real
humanoid robots, which may be able to perform social tasks
such as helping a blind to cross a street or elderly people
to perform tasks that became impossible to do alone. The
use of simulated environments is popular since it allows the
developers to make arbitrary or complex tests in the simulator
without using the real robot thus avoiding expensive material
to get damaged [3]. The teams have consisted of only
a few agents, research in coordination has not been very
important in the 3D league. Developing efficient low-level

1 DEI/FEUP - Informatics Engineering Department, Faculty of Engineer-
ing of the University of Porto, Rua Dr. Roberto Frias s/n, 4200 465 Porto,
Portugal

2 Artificial Intelligence and Computer Science Lab. Porto, Portugal
3 University of Aveiro Campus Universitário de Santiago, 3810 193

Aveiro, Portugal
4 IEETA - Institute of Electronics and Telematics Engineering of Aveiro,

Portugal

skills has been the main decisive factor in the 3D league
[4]. Despite this fact, FC Portugal main focus has been on
the high-level, multi-agent coordination [5], [6], [7]. This
work instead focus on the low-level performance of a robot
and aims to show how the robot’s low-level skills can be
improved with the aid of automatic optimization methods
and provides a comparison between different optimization
algorithms adapted to this problem, namely, Hill Climbing,
Simulated Annealing, Tabu Search and a Genetic Algorithm.
The particular skill being optimized provides the robot with
the means to get up after falling on its front and attempts to
minimize the time it takes to perform it while maximizing
the stability of the robot while, and immediately after,
performing this skill. Section II provides information about
the problem, specifically the simulation system, the agent,
skills in the FC Portugal agent in general and the skill to
be optimized in particular. Section III gives an overview of
the optimizer developed and the algorithms used. Section IV
describes the experiment conducted and its results. Finally,
section V analyses the results of the experiment and extracts
the conclusions.

II. PROBLEM FORMULATION

A computer simulation, also known as a computer model,
is a computer program that attempts to simulate an ab-
stract model of a system. A system is a set of structured
interacting or interdependent components that forms an in-
tegrated whole. Computer simulations have become a useful
part of mathematical modeling of many natural systems in
physics (computational physics), astrophysics, chemistry and
biology, human systems in economics, psychology, social
science, and engineering.

The official Robocup 3D simulation server is Simspark [8]
a generic physical multi-agent simulator system for agents
in three-dimensional environments. It simulates the laws of
physics in the real world in the context of a soccer game
(i.e. the soccer field, ball and rules of the game) as well as
the robots (physical dimensions, look, sensors and joints).

The robotic platforms (either the most simple articulated
arms or the most complex humanoid robots) are usually very
expensive. The use of simulation environments for research,
development and test in robotics provides many advantages
over the use of real robots [9], [3], [10]. The main advantages
of the simulation are:

• Less expensive than real robots;
• Easy development and testing of new models of robots;
• Easy testing of new algorithms;
• Less development and testing time;
• All tests can be done without damaging the real robot;
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• For repetitive tests (e.g. optimization processes), the use
of a virtual model is better because the robot will not
need assistance to reinitialize every iteration;

• With the quality of simulation environments that exist
today, is is possible to use the results obtained by
simulation in the real robots with just a few changes;

• Control over the simulation time;

The obvious disadvantage, in this case, is that the sim-
ulated system is never equal to the real system. As such,
software agents developed for the simulated system will
require tweaks in order to be used in the real system. How
much will have to change depends on the accuracy of the
simulation.

A. The Simulation System

Simspark is a generic simulation platform for physical
multi-agent simulations. This simulator was developed over
a flexible application framework (Zeitgeist) to be a generic
simulator, capable of simulating anything, since the launch of
a projectile to a big soccer game. The framework facilitates
exchanging single modules and extending the simulator [11].
The simulation consists of three important parts [8], [12]: the
server, the monitor and the agents.

The SimSpark server hosts the simulation process that
manages the simulation. It is responsible to advance the
simulation, i.e. modify the simulation state in a continuous
run loop. Objects in the scene can change their state which
includes properties like position, speed or angular velocity
due to several influences. The objects are under the control of
a rigid body physical simulation that resolves collisions, ap-
plies drag, gravity etc. Agents that take part in the simulation
also modify objects with the help of their effectors. Another
responsibility of the server is to keep track of connected
agent processes. Each simulation cycle the server collects
and reports sensor information for each of the sensors of
all connected agents. It further carries out received action
sequences that an agent triggers using its available effectors.

The SimSpark monitor, seen in figure 1, is responsible
to render the current simulation. It connects to a running
server instance from which it continuously receives a stream
of update data that describes the simulation states either in
full or as incremental updates relative to the preceding state.
The monitor can further be configured to read a protocol
of scene updates from a file and act as a logplayer. In this
mode it does not connect to a server instance but replays a
recorded game. The format of the logfile is identical to the
monitor protocol used on the network.

B. The Simulation Agent

RoboCup 3D humanoid soccer league currently uses a
virtual model of the NAO robot which is manufactured by
Aldebaran Robotics. Its height is about 57cm and its weight
is around 4.5Kg. Its biped architecture with 22 degrees of
freedom allows NAO to have great mobility. The simulated
version is quite similar to the real robot, as can be seen in
figure 2.

Fig. 1. Simspark Monitor screenshot.

Fig. 2. The NAO humanoid robot: real vs simulated. Adapted from [8]

The agent used for this work is the implementation of this
RoboCup simulated agent made by the FC Portugal team.

C. Humanoid Robot Skills

A skill or behavior consists in a purposeful, repeatable
action taken by the executing agent such as getting up from a
fall, kicking the ball or walking around the ball. These can be
specified once and executed as many times as necessary. In
the FC Portugal Simulated Humanoid agent, these behaviors
are specified and stored in an XML file, created by the team,
which provides the parameters for an automatic behavior
generation method. Each skill has its own XML file and all
skill specification files are loaded when the agent starts.

Skills, specified in XML files, are executed by an au-
tomatic trajectory planner. A trajectory can be defined as
the set of points followed by an object over an interval
of time. In the case of robotic joints, trajectory planning
consists of breaking the joint space into many start and
end points during the time interval. A trajectory planner
can generate skills (e.g. walk, turn, get up) by computing
different joint trajectories [10]. There are various methods for

Fig. 3. Sequence of images showing the execution of the behavior specified
by GetupFront.xml.
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SlotBehavior Variables
Scope Parameter
Slot delta (δ)

Joint
joint identifier
target angle (θ)

TABLE I
VARIABLES THAT CAN BE SPECIFIED IN A SLOT BEHAVIOR.

generating trajectories automatically, some of those used by
the FC Portugal team include a Step-based method [10], Sine
Interpolation, a simplified version of the method proposed in
[13] and a Central Pattern Generator, based on the work of
Behnke [14].

The skill optimized in this work, denominated
GetUpFront, is implemented using Sine Interpolation
which is meant to give control over each joint trajectory by
defining an interpolation of some smooth function for an
interval of time between the current angle and the target
angle. It allows defining not only the target angles, but also
the time in which those angles should be achieved, as well
as control the initial and final angular velocities. The central
concept of this method is the slot, an interval of time from
0 to δ, where several joints are moved in parallel. In each
slot, the controller will interpolate between the current angle
and the desired angle by performing a sine-like trajectory
in a specified amount of time.

In the FCPortugal agent, the skills that use this generator
are called Slot Behaviors, here the term “Behavior” is
interchangeable with the term “skill”. A skill specification
file consists of a series of slots, which will be executed
sequentially. Each slot can specify movements for different
joints as well as other parameters. The following variables
can be specified for a skill:

The GetUpFront skill consists of 9 different slots, with the
first slot being a “reset slot” which places the robot’s joints
in an initial state to execute the rest of the skill and the last
slot placing the robot in a start position for walking.

III. THE OPTIMIZER

The optimizer was developed to allow any skill of the
agent to be optimized using either a single computer or
multiple computers connected via a network. Figure 4 is a
diagram representing the configuration of the optimizer.

Once started with the proper parameters, the optimizer
executes the simulator script, a shell script which starts
the simulator and the monitor. It may start multiple simu-
lators and their respective monitors in different computers
if specified. It also executes the agent script which in turn
starts the FCP agents. The agents connect to the simulation
server and to the optimization server which will provide the
agents with the behavior to execute and receive from the
agents the performance data from that execution. Both these
connections are made via TCP sockets.

The optimization server is the core of the optimizer. Apart
from being responsible for the execution of the other com-
ponents via the execution of scripts, It contains the functions

Fig. 4. A diagram of the optimizer’s configuration. Red arrows indicate
data transmission with the tip of the arrows indicating the direction in which
the connection is established. Black arrows indicate an execution call via
a system execution command with the tip indicating which component is
being executed.

that read a behavior, run the optimization algorithm, modify
the behavior according to the algorithm, send the modified
behavior (proposed solution) to the agents for execution,
receive the execution data from the agents, evaluate the data
according to the specified objective function and, finally,
terminates the optimization process via another script.

The optimization server is actually multi-threaded. A
thread is started for each agent which creates a specific
TCP server which provides an agent with the behavior to
optimize, waits for the agent to finish executing the behavior,
receives the experimental data sent by the agent and evaluates
it, giving that generated behavior a score according to an
objective function.

In subsection II-C it was explained that behaviors are
specified and stored as XML files which are loaded when
an agent starts. The optimization server has functions which
read the behavior to be optimized from its XML file and
load the behavior into an array in memory. It is this array
representation of the behavior that will be modified by the
optimization algorithm. This representation is then transmit-
ted to the agents, via a socket, to be executed. To perform
this function, the optimization server creates a TCP server
to which the agents connect.

An agent script, specific to each behavior to optimize,
is responsible for starting the FCP agents and providing
them with their parameters. This allows the agents to be
started on the local machine or in a remote machine. Another
shell script is responsible for terminating the agents. In the
actual implementation, for convenience, the simulator script
is started from the agent script. The simulator script starts
both the simulation server and the monitor.

The scripts exist for both flexibility and to isolate the
optimization server from the specifics of running the other
components. Recompiling the optimization server each time
we wanted to change the parameters of the FCP agents such
as the IP addresses of the simulation or optimization server
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changed would be a poor design choice.

A. Optimization Algorithms

Several problems aim at finding the best configuration of
a set of parameters to achieve a goal (or some goals). The
goal is either to minimize or to maximize some quantity.
This quantity is a function of one or more variables and
is known as the objective function, f . The independent
variables that can change while searching for an optimum are
known as the decision variables. If the goal is to minimize f ,
then f is called the cost function (or sometimes, the penalty
function). When the goal is maximization, f is referred as
the utility function (or sometimes, the benefit function). For
some problems, the values that decision variables can take
are further specified through a number of conditions known
as constraints.

The search space of a problem is defined as the set of
all candidate solutions. A candidate solution corresponds to
an instantiation of the decision variables, if it satisfies all
the constraints of the problem then it is called a feasible
solution or just a solution. The solution space is the set of
all (feasible) solutions. An optimal solution is a solution for
which the objective function evaluates to an optimum (min-
imum or maximum). Computer algorithms that iteratively
traverse the search space with the purpose of finding optimal
solutions are called automatic optimization algorithms. A
candidate solution can also be referred to as an individual.
Optimization problems may be broadly divided into two
main categories: individual-based methods and population-
based methods. Individual-based methods deal with only one
current solution. Conversely, in population-based methods
counts with a set of individuals (population) that are handled
simultaneously.

The Hill Climbing (HC) algorithm [15], [16] is the
simplest algorithm implemented. Starting with the initial
solution, the skill specification file created by the team, it
generates a neighboring solution from the current solution by
copying it and randomly modifying a single random decision
variable. The solution is then evaluated and if it is better
than the current solution, the algorithm makes it the current
solution. This algorithm easily gets stuck in a local optima
solution, i.e., none of the neighbors has a better evaluation
than the current solution, which might be a poor quality
solution. A possible strategy to solve this problem is to,
sometimes, accept worse solutions.

Simulated Annealing (SA) [17] implements a mechanism
for escaping from local optima, accepting a solution worse
than the current one with a probability, depending on a
specified value known as temperature, that decreases along
the optimization progress, by a factor known as cooldown,
and the difference in evaluation between the current score
and the new (worse) solution. Aside from the temperature,
another value, known as restart can be specified which
returns the algorithm to the best solution found after the
specified number of iterations.

Another problem is the effect of cycling through solutions.
This may be solved by introducing memories to remember

the nodes already visited, as with Tabu Search (TS) [18]. The
main characteristic of TS is the systematic use of memory.
While most exploration methods keep in memory essentially
the best solution and its evaluation score, TS also keeps a
list of the last solutions visited. In essence, TS declares each
node already visited as a tabu. Tabus are stored in a list, the
tabu list, and the search in the neighborhood is restricted to
the neighbors that are not in the tabu list. The implemented
TS algorithm also uses an additional tabu list for the search
direction (determined via the gradient) to prevent searching
in the direction of previous, worse, solutions.

All methods presented so far were local and individual-
based, unlike Genetic Algorithms (GA) [19], an optimization
method inspired by the evolution of biological systems and
based on global search heuristics. In spite of being different,
evolutionary algorithms share common properties since they
are all based on the biological process of evolution. Given an
initial population of individuals (also called chromosomes),
the environmental pressure, applied by the fitness (objective)
function, causes the best fitted individuals to survive and
reproduce more. Each individual (chromosome) is a set of
variables (genes) and represents a possible solution to the
optimization problem. The algorithm starts by creating a
new population of individuals. Typically, this population is
created randomly but any other creation function should be
acceptable. The genes of each individual should be inside a
range of acceptable values (variable domain) that is defined
for each gene. The algorithm then starts the evolution which
consists of creating a sequence of new populations. At each
step, the algorithm uses the individuals in the current pop-
ulation to create the next population by applying selection,
crossover and mutation operators. These genetic operators
can be described as follows:

• Selection: Specifies how the GA chooses parents for
the next generation. The most common option is the
roulette option which consists of choosing parents by
simulating a roulette wheel, in which the area of the
section corresponding to an individual is proportional
to its fitness value;

• Elitism: Defines the number of individuals in the cur-
rent generation that are guaranteed to survive in the next
generation;

• Crossover: A crossover function performs the crossover
of two parents to generate a new child. The most com-
mon are the scattered function and uniform crossover,
the first creates a random binary vector and selects the
genes where the vector is a 1 from the first parent, and
the genes where the vector is a 0 from the second parent.

• Mutation: The mutation function produces the mutation
of children. The most common is the uniform mutation
which applies random variations to the children using
an uniform distribution. Uniform mutation receives a
parameter, pm which corresponds to the probability that
an individual entry has of being mutated.
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Algorithm Parameter Value

Common

Number of Experiments 14
Threads 6
Minimum Change for Angles -5.0
Maximum Change for Angles 5.0
Minimum Change for Deltas -0.4
Maximum Change for Deltas 0.4;

HC Number of Iterations 400

SA

Number of Iterations 400
Temperature 450.0
Cooldown Factor 0.95
Restart 30

TS Number of Iterations 400
Tabu List Size 1000

Genetic Algorithm

Number of Generations 100
Population Size 24
Number of Elite Solutions 6
Mutation Probability 0.5
Crossover Probability 0.2

TABLE II
ALGORITHM PARAMETERS.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

The GetUpFront skill consists of 9 different slots, all slots
where optimized except the first slot which serves as a ”reset
slot”. For the last slot, which sets the position of the robot
to initial position for the walk, only the delta was optimized.
Because the behavior was designed so that the right side and
left side joints moved simultaneously to the same angles, this
constraint was enforced during the optimization process. A
total of 39 different variables, consisting of joint angles and
slot deltas (see table I), are used in the optimization of this
skill.

Table II shows the algorithm parameters for the experi-
ment. The number of experiments means that each time a
solution is evaluated, the skill is tested that many times and
the skill’s resulting score is an average of the result for each
test. The minimum and maximum change parameters are the
lower and upper bounds, respectively, for the random change
applied to a solution in order to create a neighboring solution.
All other parameters were explained in subsection III-A. The
following evaluation function is used:

f = 1000− t ∗ wt − s ∗ ws (1)

Where t is the time taken to execute the GetUpFront skill,
wt = 10 is the weight associated with the time, s, with an
associated weight ws = 500, is a binary measure of the
stability of the agent and is set according to:

s =

{
1 if the agents falls during execution of the skill
0 otherwise

(2)

B. Results

Figure 5 shows the evolution of the objective function’s
score over the course of the algorithm’s iteration. The red
dots show where better solutions were found. Table III shows

the performance of the skill, measured by the execution
time, after being optimized by each algorithm as well as
the original skill’s performance.

(a) Hill Climbing

(b) Simulated Annealing

(c) Tabu Search

(d) Genetic Algorithm

Fig. 5. Optimization of the GetUpFront skill: Score vs Iterations

The best result, obtained by optimization with HC, is
1.06s which represents an improvement of approximately
50% over the original skill. It is also useful to compare
the best result obtained to other teams participating in the
RoboCup challenge which is done in table IV. For this end,
the execution time of the equivalent skill of the champion
and vice-champion teams of the 2010 edition of the RoboCup
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Algorithm Execution Time
Original 2.00 (s)
Hill Climbing 1.06 (s)
Simulated Annealing 1.37 (s)
Tabu Search 1.19 (s)
Genetic Algorithm 2.00 (s)

TABLE III
RESULTS FOR THE OPTIMIZATION OF GETUPFRONT - VARIOUS

ALGORITHMS COMPARED.

World Soccer Cup 3D simulation league, Apollo3D and
Nao Team Humboldt, respectively, are also presented. The
execution times for these teams are approximations obtained
by analyzing the logs files of the final matches.

Team Skill Execution Time
FC Portugal (original) 2.00 (s)
FC Portugal (optimized) 1.06 (s)
Apollo3D 2.00 (s)
Nao Team Humboldt 2.00 (s)

TABLE IV
TIME FOR THE AGENT TO GET UP AFTER FALLING ON ITS FRONT.

V. CONCLUSION

Humanoid robots are not currently on par with humans
in performing the most basic of tasks, such as getting up or
walking sideways. This thesis offers an automated process of
reducing this difference by improving existing skills with the
aid of automatic optimization methods. The initial work was
made to create an optimization framework for the skills of the
FC Portugal 3D humanoid agent which inhabits the simulated
world of the RoboCup 3D simulation server. This required
both modifications to the agent, the simulation server and
the creation of the optimizer itself. The configuration of
the optimizer allowed for easy distributed optimization using
multiple agents and multiple simulations executing concur-
rently in multiple computers over a network. Subsequently,
different optimization algorithms were implemented, namely
Hill Climbing, Simulated Annealing, Tabu Search and a
Genetic Algorithm. These algorithms were then used to
optimize the GetUpFront skill, which uses Sine Interpolation
for automatic trajectory planing The results were definitively
good. The skill improved its execution time by 50% from
around 2s to around 1s. The resulting skill is faster than
the original skill as well as the equivalent skill implemented
by other teams participating in the RoboCup 3D simulation
league.

The two best algorithms, in terms of end results, were Hill
Climbing which found the best solution and Tabu Search
which found a solution very close to that found by HC. TS
was, however, much faster than HC at the finding solution,
as evidenced by figure 5, and even though the solution it
found was not as good, it was only marginally worse. The
implemented Genetic Algorithm failed to find better results
for the GetUpFront skill. Its global search strategy does not

seem adequate to optimize skills which, in spite of a very
large search space, have an initial state very close to the
optimum.
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Abstract— Humanoid robotics is being studied by various 
fields, because it can be an interesting test bench for different 
technologies. Furthermore, methodologies for planning actions in 
advance are widely used for mobile robot's movements in static 
environments and are being extended and adapted to dynamic 
environments, such as soccer games between humanoid robots. 
The choice of the methodology to achieve the plan is vital to 
accomplish the final goals. This paper reports the modelling and 
implementation of a path planning methodology for humanoid 
robots. The main contribution relies on applying planning 
techniques and iterative deepening search to determine the best 
sequence of actions that lead the robot to traverse the optimal 
path to the ball so that it can kick the ball to a given pre-defined 
target. Some results are presented and discussed to prove the 
efficiency and reliability of the approach. 

Keywords - Path Planning; Humanoid Robots; Robotic Soccer. 

I.  INTRODUCTION 

Robotics is a branch of engineering that involves various 
fields as mechanics, electronics and computer science. Thus, 
robots with a human form always aroused curiosity and, in the 
last few years, the idea to have a perfect humanoid robot is 
becoming more real. In the humanoid robot field, RoboCup 
which includes a soccer competition using NAO humanoid), is 
giving huge contributions. 

One interesting way to achieve better results is to apply 
Artificial Intelligence (AI), in scenarios as learning how to 
walk, planning objects manipulation, path planning, and so 
forth. The context of this work is path planning for humanoid 
robots in a soccer based environment. 

In such continue and real-time environment, Footstep 
Planning [1] may used in the path planning task. It discretizes 
the possible actions of the robot into a small set of well-chosen 
actions as different foot placements is not a proper solution due 
to the fact that its search graph grows exponentially with the 
number of steps. Only a small number of footsteps can be 
explored in a real-time system [2]. 

We have to compute a trajectory for the body-center of a 
humanoid robot by approximating the shape of the robot. The 
shape of this trajectory depends on the humanoid robots’ 
ability of low level biped locomotion skills, such as walking 
curving and etc. 

In previous works in this research topic, humanoids often 
have basic low skills for performing their tasks and following 
their path trajectory, including forward walk, turn, and different 

curve skills [3]. Fortunately, in our recent project on biped 
locomotion we can achieve to omni directional walking, it 
means that the robot is able to walk in forward and backward 
direction, different type of walking while curving and turning 
on the spot [4], [5]. Therefore, it has the capability of following 
many path trajectories. This flexibility is an advantage, 
however it increases the complexity of the path planer 
dramatically. 

In motion planning the number of degrees of freedom is 
usually small which opens the door for the application of 
search techniques. Humanoid robots usually have more than 
ten degrees of freedom. Their feet can be placed with a great 
precision and changing the body posture allows to overcome 
obstacles that wheeled robots fail in passing through. 

In this paper, we present a scenario where the robot, 
starting from a position far from a ball, has to approach it and 
then kick it to the target, using the best possible path. To 
execute this, the robot has to construct the space state and 
search for the solution, spending the shortest possible time. 
Also, environment and robot constraints were reviewed for 
system implementation. We simulated it with RoboCup official 
3D simulator to evaluate the planner performance.  

The remaining of this paper is organized as follows. Section 
II presents the characteristics of an humanoid robot and the 
humanoid simulator used In the next section, we discuss the 
motion planning related work to understand what already is 
developed relating it with humanoid robotics. The fourth 
section presents our methodological approach, experimental 
results, and finally section V presents the conclusions and 
suggestions for future work. 

 

II. HUMANOID ROBOTICS 

A humanoid robot is a robot with its overall appearance, 
based on human body, and with the ability to move on its own 
legs. The number of joint actuators indicates the number of 
Degree of Freedom (DOF). Like humans, humanoid's body 
moves in three planes, including transverse (axial), frontal 
(coronal) and sagittal Planes. Sagittal plane indicates the 
vertical plane running from front to back and dividing the body 
into left and right sides. Frontal or Coronal plane is a plane, 
perpendicular to the sagittal plane, running from side to side 
and dividing the body into front and back. 
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The creation of humanoid robots has been motivated by the 
idea of having a device capable of operating in environments 
made by and for humans with minimal change to those 
environments. These machines are expected to perform 
autonomously most of the functions a person is capable of. 
These include climbing stairs, reaching for objects, etc.  

One of the best known applications of humanoid robotics is 
the humanoid league of RoboCup. The goal of the RoboCup 
initiative is to develop a team of humanoid robots able to win 
against the official human World Soccer Champion team until 
2050. The humanoid league is concerned with skills as: 
dynamic walking, running, kicking the ball while maintaining 
balance, teamwork, and self-localization. The smaller 
competition category is KidSize (30-60cm). There is also a 
humanoid standard platform league which uses the NAO 
humanoid robot [6]. 

The French company Aldebaran Robotics developed NAO. 
The first prototype was released in 2005. Fig. 1 shows NAO, a 
58cm height robot with 22 degree of freedom (DOF), counting 
on different sensors distributed in key parts of it [7]. The Nao 
model is used in the RoboCup 3D simulation league, using 
Linux and based on spark technology. In this work we used the 
RoboCup 3D simulator to implement and test our prototype. 
Further information about the simulator will be given on 
subsection 5.2.  

 
Figure 1.  General Caracterestics of Nao 

 

III.  RELATED CONCEPTS AND TECHNOLOGIES 

Robots have four basic components: sensing, actuating, 
planning, and control. Since we are focusing in the planning 
component, it is logic to ask: what is planning? To plan is 
abstract the process to choose and, also, organize a sequence of 
actions to achieve some goal. Nevertheless, to construct a plan 
for the real world is a hard task, so the classical planning often 
uses some constraints, such as: atomic time, closed world, 
deterministic effects of actions, and the planner has 
omniscience of knowledge [8]. 

There are several strategies of planning; however, we are 
going to focus on the one used in this work. First, explaining 
the data structure used to represent the problem (and 
consequently the search space), then the search technique and 
the approach used to model the problem. 

There are various ways to search a tree structure and here 
we are going to focus on uninformed search (also called blind 

search), specifically on Iterative deepening depth-first search 
(or Iterative deepening search). The uninformed search means 
that the algorithm has no additional information other than the 
capacities to generate successors and to distinguish a goal state 
from a non-goal state. 

Iterative deepening search is a general strategy, often used 
in combination with depth-first search, which finds the best 
depth limit. Its algorithm (shown in Figure 2) also combines 
the benefits of depth-first search (modest memory 
requirements, precisely O(bd) ), and breadth-first search 
(branching factor is finite and optimal when the path cost is a 
non-decreasing function of the depth of the node) [8]. 
However, it may seem wasteful, because states are generated 
multiple times, being this not very costly. Also, based on the 
total number of nodes the time complexity is O(bd). 

 
Figure 2.  Pseudo-code of Iterative deepening search [8] 

Albeit we did not use GRAPHPLAN directly in this work, 
it has a great importance for this project in the task of problem 
modeling. GRAPHPLAN is a planning technique, which 
represents its plans on graph form. Two nodes compose this 
graph: propositional nodes (indicate the world state in a time 
instant. i.e. preconditions), and action nodes (represents the 
possible actions that can be performed with the indicated 
preconditions); also, the actions create a new propositional 
nodes with their effects. So, this idea of preconditions and 
possible action was used to model our problem (presented in 
subsection 5.1). Here we just gave a brief overview of 
GRAPHPLAN’s planning graph and for further information 
consult reference [9]. 

 

IV.  METHODOLOGICAL APPROACH 

In this section, we discuss the followed steps, covering 
from modeling to system implementation. In general, the 
methodology consists of: defining our scenario, finding all 
constraints related to it, designing the system architecture, 
integrating the developed module with the simulator, and 
validating the approach showing robot’s trajectory constructed 
with the planner. 

A. Modeling  
In this section, we describe how our problem was modeled, 

and which abstractions were used to achieve it. We also 
describe how to identify complexities and constraints and, from 
that, simplify the model without losing key aspects, such as a 
certain degree of realism. We divided the modeling in various 
steps to be more intelligible, because it has a long sequence of 
details to be understood. 

The problem was retired from soccer games with humanoid 
robots, being the chosen situation extremely frequent during 
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these games. Thus, solving this situation efficiently is vital in 
the team overall performance. The scenario is presented in 
Figure 3, consisting it in a robot distant d from the ball with a 
different orientation of the ball’s. The final goal is to put the 
ball in the target by kicking it and achieving to the condition of 
kicking in the most optimal way. 

 
Figure 3.  Used scenario 

Further, observing the real robot operations during a soccer 
game the following actions were identified: 

• Straight walk 

• Curve walk 

• Turn in place 

• Kick 

Also, the possible states were abstracted using some 
questions. We found all states cited above and the questions 
their try to answer: 

• Having ball (Ha Ball) - is the ball near to robot or not? 

• Ball aligned (Ball Dir) - is robot’s direction aligned 
with the direction of ball to target? 

• Ball in the Target (Ball Targ) - is the ball in target or 
not? (after kicking). 

Table 1 shows the correlation between action and states. It 
was based on GRAPHPLAN modeling, extracting concepts of 
precondition to execute an action and effects of each action. 
Thus, to construct all correlations we enumerate various 
situations and extract them. The action Curve Walk is more 
complex than others, so we need to analyze it deeper. 

TABLE I.  PRECONDITIONS AND EFFECTS OF ALL ACTIONS 

 

The robot Curve Walk has restrictions. It cannot perform 
curves with all radius, only discrete and established curves, due 
to the characteristics of the robot’s joints. Consequently, we 
cannot determine the effect of this action with respect of 
having or not the ball. To suppress this, a tree structure was 
used. Additionally, the number of possible curves needed to be 

decreased because of the limited capacity robot’s processing 
power, being 3 curves the optimal number found. 

 Therefore, the trajectory and velocity of the used curves 
are not perfect, due to the learning process of the robot. In 
Figure 4, the variation in the performed path can be observed.  
Finally, after modeling the problem the prototype was 
developed and will be explained in detail in the next section. 

 
(a) Radius of 1.5 

 
(b) Radius of 1 

 
(c) Radius of 0.5 

Figure 4.  Left) Path trajectory for different Curves walkings. Right) 
Velocity for each radius of curve walking 

 

B. Prototype Developement 
The next step in our approach is to implement the prototype 

using the model described before. In order to fully achieve a 
functional system, more than just the planner itself is needed 
and the presentation of the complete architecture is the goal of 
this section. 

In the broad view, the prototype will be a module inside the 
robot’s agent already built, i.e., the humanoid robot is 
controlled by a software agent, counting on different modules 
(or behaviors), to guide the robot’s action. This feature makes 
the platform scalable, so new modules can easily be added. In 
addition, to code the prototype C++ language was used. 

Focusing in the system, the environment, as told before, is 
extremely dynamic and stochastic, because of that we can not 
cannot plan with some world state and then execute it without 
verifying again if the world state changed. We want a plan for 
the next 10 seconds, but how to solve it considering the 
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environment characteristics? By using an architecture, which 
will control the current plan execution and analyze if the 
planner’s goal was achieved, and even predict if it can be 
achieved in the current conditions. However, to plan is a very 
time-consuming task. Because of planning complexity, and in 
order to have the robot operating in real-time, the robot has to 
avoid to plan frequently. 

 
Figure 5.  Process sequence in encountering a change in the 
environment 

Figure 5 describes the process sequence in encountering a 
change in the environment; bein its dynamic explained as: 

• The environment changes, so the roadmap (or strategy) 
must be updated to plan a path or not. After that the 
path planning block, by checking the updated roadmap, 
is going to create a new path graph. Further, the graph 
is updated and put in the roadmap to be checked again 
after the environment changing. The previous plan and 
the time of creating the plan is going to be in the 
roadmap. 

Our general approach is presented in Figure 6. The sensor 
signals enter in the Monitor block, which decides if the plan 
must continue or not based on the world conditions and 
information of the current plan. Then, the modified world state 
has to go to the Planner, also details of the plan are sent to the 
Monitor for future controlling task described above. The 
planner’s output is a sequence of actions for the robot, in our 
case they are represented by a set of speed and angle 
information. 

 
Figure 6.  General approach diagram 

Concerning the changing in the environment, we define 
three situations that determine that the plan has to be rebuilt: 
the ball position changed more than a threshold, the difference 
between robot’s predicted position and robot’s current position 

is more than a threshold, and if after 10 seconds the robot does 
not reach the ball. Thus, define thresholds for ball and robot’s 
relative positions is a hard task, demanding high numbers of 
experiences. 

Inside the Planner, iterative deepening search is used to 
explore the tree. The tree expansion is shown in Figure 7, for 
each node the n possible actions are applied (preconditions 
must be considered), generating at most n prediction 
conditions. The graph growth is executed until the goal has 
been found, with maximum of 10 cycles (i.e. 10 seconds). 

 
Figure 7.  Manner to explore the tree 

For sure, our goal state will be one of the states present in 
the tree. Therefore, combining the exploring the tree (shown 
before), with the sequence of time quantas, the first time the 
goal state in the tree is reached, we obtain the optimal and 
fastest solution. 

We faced a time complexity constraint, presented in the 
modeling section. Thus, the robot plans for the next 10 
seconds, each action is executed in 1 second. So, using the 
equation O(bd) the d is 10 (extension of the plan) and b is 6 
(number of possible actions). In respect of that, we can increase 
time efficiency of the algorithm in 3 ways: increasing 
execution time for the actions, reducing possible actions (using 
heuristics), discovering more preconditions and constraints.  

This section aims, first, to prove the prototype functionality 
and, then evaluate the performance of our approach in some 
established situations. Several illustrative examples, showing 
how the system behaved in simulated environment, are 
presented here. We presented a tree-based approach integrated 
with planning paradigms for exploring and finding optimum 
path to achieve to ball in order to kick the ball to defined target. 

The Planner tries to plan different skills with different 
characteristics in order to control the path trajectory of the 
humanoid robots. Further, two experiences were realized to see 
how the prototype behaves when it is coupled together with 
others modules of the agent. The same scenario was used and 
just the robot’s position was varied in order to confirm the plan 
construction for different situations. The simulator 
Rcssserver3D [10] was used to test the scenario described 
above. 

In this scenario, the robot is initialized in a position r in 
Cartesian coordinates where its center is the center of the field. 
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It plans to move the ball (position b) to the goal target where its 
global position in the field is t. For the first experience, the  
values were r = (−1.7; −1.11), b = (0; 0), and t = (7; 0). The 
second experience is similar to the first one, however the value 
of r is (−3.09; 0.37). 

Figure 8, illustrates the expanded tree used to explore and 
search aiming to find the optimal plan and, also, shows the 
resultant plan as a set of positions extracted from the tree. The 
route of the tree is the Cartesian position of the player in the 
field. Therefore, Figure 9 shows the robot’s position trajectory 
while it utilizes the produced path plan to reach the ball. As 
plan’s results, we can see the ball’s positions in the field when 
it was kicked by the robot being its trajectory also shown. 

 
Figure 8.  Tree of plans and chosen plan 

In Table 2, the details of the path plan can be found. The 
plan starts from the robot’s position and ends having the ball, 
which satisfies the precondition for the kick. Also, Figure 9 
illustrates the robot’s trajectory while it uses the path. 

 

TABLE II.  SEQUENCE OF POSITION FOR THE DESIGNED PLAN 

Action Order Position X Position Y 

1 −1.72624 −1.11048 

2 −1.12624 −1.11048 

3 −0.526237 −1.11048 

4 −0.526237 −1.11048 

5 −0.526237 −1.11048 

6 −0.00301497 −0.515413 

 

We observed certain advantages as: the robot using the 
prototype could accomplish the goal, i.e. walk to the ball in the 
shortest time possible (optimal path), then kick the ball in the 
target direction. Nonetheless, as observed in Figure 8, the 
search space is overly explored resulting in a loss of processing 
time (e.g. the robot explore and search also in some direction 
opposite the ball). 

 
Figure 9.  Robot’s and ball’s trajectories (situation 2) 

Finally, comparing Figure 8 and 9, we can see that the 
robot’s speed interferes in the path plan execution, i.e., when 
the robot walks at high speeds it tends to leave the projected 
trajectory. This result that in the end of the plan the robot 
cannot achieves to the desired point and, consequently, monitor 
has to replan. 

V. CONCLUSIONS 

Planning aims to find a sequence of actions to reach to a 
final goal state, being its techniques extremely used for motion 
planning. A complex environment to deal with is the soccer 
game. It is even more complex if the scenario includes 
humanoid robots, which are being increasingly applied in this 
environment. Also, for humanoid robots, the planning 
techniques are not developed enough. 

A new approach was presented to correlate path planning 
for humanoid robot in the soccer game environment. Further, 
the situation of a robot trying to reach the ball and kick it to the 
target, was modeled using preconditions and actions concepts 
which results in a realist, but simple, model of the problem. 
Furthermore, we implemented the prototype (modeled as a 
iterative deepening search), that could achieve the optimal 
solution. Experimental results validate the approach, in path 
planning issue, for humanoid soccer robots, to perform their 
tasks in the best manner. 

There is a sequence of works that could follow the present 
work, we point some of them. First, use learning methods to 
discover unknown parameters, such as optimize the planner’s 
time window. Also, add more heuristics and analyze more 
preconditions to reduce possible actions, i.e., we need to render 
the model in more detail to search new relations between 
preconditions and actions. To insert capabilities for obstacle 
avoidance is a simple next step because the system already has 
access to the robot position, so it just needs the obstacle 
positions and filter the plans that originate collisions.  
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Abstract—Controlling the body requires self-explorative behav-
ior as well as the ability to build a model of the body. This model
does not need to explicitly encode body shape, joint positions, and
so on, but can just as well be built up implicitly. We introduce
Quadric-Representing Neurons (QRENs) and show why they are
very well-suited to model the plurality of body morphologies.
QRENs can be either learned in a batch manner or on-the-fly
in real-time. They possess the important property to extrapolate
behavioral manifolds from a reduced and localized sensorimotor
data set. QRENs can be used to elegantly control a robot’s body
in a straightforward way. We comment on how QRENs have
the potential to allow for modular and hierarchical learning
strategies.

I. INTRODUCTION

Learning how to control the body within a given envi-
ronment is a fundamental perceptual task. It requires self-
explorative behavior and at the same time the ability to build a
model of the body – be it a human being, animal, or robot. In
biological systems, information of body posture is available in
real-time by afferent proprioceptive sensory signals, but there
is no such sensory signal which is directly informative about
the body’s size and shape. Although the need for a stored body
model has been recognized for quite some time, only recently
techniques have been introduced to systematically isolate and
measure this model for one limb: in [1] the authors produced
maps of the mental representation of people’s hand size and
shape.

Clearly, body models do not need to explicitly encode body
shape, joint positions, lengths and mass distributions of the
limbs. This would only be required if a robot is to be driven
using inverse kinematics, like with industrial robots, where
this is still the preferred method. A large amount of literature
is dealing with optimal control of smooth motion trajectories,
whilst circumnavigating singularities of the inverse model; for
an overview see [2]. Body models can just as well be built up
implicitly. One example how information about the full body
size of a segmented artificial organism can emerge within each
body segment using a local homeostatic learning rule can be
found in [3].

In the paper at hand we introduce Quadric-Representing
Neurons (QRENs) and show why they are very well-suited
to model the plurality of body morphologies. The remaining
sections are organized as follows. We first define quadrics,

describe what they are able to represent geometrically, and
introduce QRENs by using quadrics as kernel functions. Then,
we describe the different body morphologies under investiga-
tion and give examples on how the body morphologies are
mapped onto the QRENs. We discuss learning with small data
sets, show how a robot can be controlled by using the QRENs,
and finally comment on the QRENs’ potential to allow for
modular and hierarchical learning strategies.

II. QUADRICS AND QRENS

A quadric Q is a surface defined by an algebraic equation
of degree two. Formally, we have

Q = {x ∈ Rn | xTAx+ bx+ c = 0}, (1)

where A ∈ Rn×n symmetric, b ∈ Rn, and c ∈ R. The vector
notation is neat and advantageous if we need the eigenvalues
and eigenvectors of A. This is the case if we want to normalize
the quadric, i.e., successively get rid of the mixed terms of
order two (off-diagonal elements of A are all zero) and, if
possible, also the linear terms (b = 0) and the constant
(c = 0). Using the normalized standard form, quadrics can be
categorized, and for n = 3 also be visualized. Some examples
are shown in figure 1. A parabolic cylinder, a hyperboloid of
one sheet, and two parallel planes are respectively defined by

x21 − x2 = 0,

x21 + x22 − x23 − 1 = 0,

x21 − 1 = 0.

Quadrics play an important role in algebraic geometry. We can
link quadrics to robot morphologies which are situated in an
environment by identifying the variables with sensor values.
This will briefly be addressed in the following section.

Figure 1. Three examples of different quadrics in R3, namely a parabolic
cylinder, a hyperboloid of one sheet, and two parallel planes (from left to
right).
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A. Why Second Order is Sufficient

For a large range of robots quadrics are able to describe
invariants, i.e., when choosing the appropriate coefficients, the
quadric stays zero for a specific subset of the robot’s config-
urations. In other words, quadrics exist, which are invariant
under some type of the robot’s behavior. This is inter alia the
case for robot arms with a series of revolute joints [4].

Why is it sufficient to use a second order polynomial to get
a behavior-invariant constant expression? This depends on the
type of sensor values used. Let us assume we have a robot
arm with two revolute joints in series and arbitrary angular
ranges and segment lengths of the arm. We are interested
in all configurations where the robot touches a plane. If we
use angular sensor values, then we have the trivial case, that
the sum of the angles remains constant. If we use cartesian
coordinates (e.g., if the sensor values are derived from an
image of the scene), then we have

x1 = r cosϕ, x2 = r sinϕ, (2)

for a single joint. Obviously, we get a constant expression by
squaring and summing. If we use a completely different type
of sensor value, namely acceleration forces of sensors mounted
on the robot arm, then again the squared sum of all values will
be constant and represent the static gravitational force. This
is of course only exactly true for moderately slow motions of
angular joints, but approximately still holds otherwise. All in
all, there is good reason why quadrics are sufficiently accurate
to describe behavioral relationships between a robot’s body
and the environment.

B. Using Quadrics as Kernel Functions

The main idea of a QREN is to use quadrics as kernel
functions and let the QREN indicate the presence of a specific
behavioral mode of a robot within a given environmental
context.

Since we are not interested in normalizing and categorizing
the quadric but want to learn the quadric in real-time, it is
advantageous to switch from matrix notation to the following
notation:

Q = {x ∈ Rn | wT fn(x) = 0}, (3)

where fn : Rn → Rm is the expansion of x including all
quadratic terms and the constant 1, w ∈ Rm is a weight vector,
and m = n(n+3)

2 + 1.
We are now ready to define the output of a QREN as follows:

qw(x) = e−(w
T fn(x))

2

. (4)

Clearly, qw(x) acts as an indicator neuron, as we have

qw(x) = 1 ⇐⇒ x ∈ Q. (5)

The more x is distant from Q, the more qw is close to
zero. Please note, that w is only defined uniquely up to
a multiplicative factor. We therefore have to normalize w
in some way, if we want to compare the output signals of
different QRENs to find out which quadric x is closer to. A
straightforward approach would be to demand ‖x‖ = 1, but

we already succeeded with the even easier trick to always have
the quadric’s constant term equal one (we get more explicit
below).

In other fields, there exists quite some literature on how to fit
the parameters of a quadric to a given data set, mostly for data
stemming from stereo images or laser range measurements,
e.g., see [5], [6], or, very recently, [7]. But also more general
approaches have already been addressed [8]. There exist
comparative surveys on the quality of different methods, as
in [9] and [10], as well as reports on stability [11]. Of specific
interest for our QRENs is the comparative survey of neural
learning rules in [12], most standard methods of which can
be applied here. Using a competitive neural network with a
simple delta rule will already work well when learning several
QRENs simultaneously. In this paper, we will not go into
detail concerning the selection of an appropriate learning rule,
but focus on the peculiarities of robot learning, namely, that
sensory data from real behaviors will mostly only cover a
small part of a full quadric. Therefore, we are interested in
the QRENs’ extrapolating abilities.

For what follows we use n = 3, so the parameter vector to
be learned is of dimension m = 10. We have

x = (x1 x2 x3)
T
,

f3(x) =
(
x21 x

2
2 x

2
3 x1x2 x2x3 x1x3 x1 x2 x3 1

)T
,

w = (w1 w2 . . . w10)
T
,

where we demand w10 = 1 during the least squares fitting
of w. Coefficients shown in the section on experiments will
always be in the order w1, w2, . . . , w9. Since w10 = 1 by
construction, this coefficient will be omitted.

III. DIFFERENT BODY MORPHOLOGIES

For the investigation of the QRENs’ properties, the two
robots SEMNI and Myon have been used, which significantly
differ in size, mass, actuation, and overall morphology. They
will briefly be described within the following subsections.

Despite their different properties, they are equipped with
the same data interface, so data acquisition and experimental
setting could be identical for both hardware platforms. Thus,
it can be excluded that resulting body models are distorted
systematically due to platform-dependent data quality (e.g.
noise, resolution, sampling rate). Sensorimotor loops have
always been guaranteed to run tightly at a rate of 100 Hz.

A. The Self-Exploring Robot SEMNI

The acronym SEMNI stands for Self-Exploring Multi-Neural
Individual – and that is exactly the purpose the robot has
been built for. It possesses only two degrees of freedom: one
revolute joint at the hip, and another one at the knee, as can
be seen in figure 2.

Proprioceptive sensors continuously measure the current and
temperature of each actuator, the angular positions of both
joints and the acceleration forces within the robot’s mid-
sagittal plane, relative to the center of the printed circuit board
in the head. Thus, there are two motor values and eight sensor
values per 10 ms time slot.
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The actuators can be controlled in various ways. For the
experiments reported here, we choose a constant velocity
paradigm to always keep the robot in motion at a moderate
speed. This way, we can omit the robot’s velocity vector and
restrict ourselves to the analysis of the manifold

Mr = {(ϕh, ϕk, ϕb) ∈ R3 | χr(ϕh, ϕk, ϕb) = 1}, (6)

where ϕh, ϕk and ϕb are the angular positions of the hip joint,
knee joint and the robot’s body, the latter being measured rel-
ative to the horizontal ground surface. Due to the moderately
slow motion, the horizontal and vertical acceleration forces Fh

and Fv are dominated by the earth’s gravitational force, so the
body position can be calculated as ϕb = arctan(Fv/Fh).

The characteristic function χr equals one, iff its argument
represents a body posture which the robot can reach and
hold on its own. Thus, the manifold Mr is defined by all
reachable body positions on a flat ground, without using
dynamic motions and excluding transient motions when the
robot falls over.

Obviously, Mr completely depends on the robot’s body
shape, moving abilities, and environment. It can thus be
regarded as an implicit body model of the robot, situated
in a fixed environment. Whenever the robot is at rest, its
body posture and position relative to the ground correspond
to a point p ∈ Mr. So, at low velocities, we stay within
Mr, whereas dynamic motions temporarily leave Mr, be they
induced by the robot’s motors or by tumbling accidentally.

Having noted this, we are now able to inspect Mr for SEMNI
on a flat ground. Please refer to figure 3 for the following
explanation. The manifold has been cut into four parts. We
start with the bottom left image, which corresponds to the
situations where the robot is lying on its front side (i.e., 90
degrees counter-clockwise from the position shown in figure
2). The xy-position corresponds to the posture of the leg, with
the horizontal position representing the joint angle of the hip,
and the vertical position that of the knee.

Figure 2. Left: The 30 cm tall robot SEMNI standing in an upright position.
Proprioceptive sensors are located within the actuators (hip, knee) and on the
printed circuit board in the head. The robot is facing to the left, with the leg
standing on the back side. Right: Head, torso, and right arm of the modular
humanoid research robot Myon. The black solid line indicates the area which
can be reached by the arm. The hand is not attached in this experiment.

The border of the missing corner (top right white part of the
image) represents all leg postures where the foot touches the
back part of the head. For each xy-position (i.e., leg posture)
the color encodes the body’s angle relative to the ground. The
darker the blue, the more the head is near the ground, whereas
the darker the red, the more the head is in the air. The pale
greyish regions indicate leg postures where the robot’s body
is lying on the ground horizontally.

As can be seen, the robot is tilted a bit in one or the other
direction, depending on where the barycenter of the leg is,
relative to the hip joint. Now, the robot is starting to sit up, if
the leg is following a specific trajectory, which is shown in the
top left image. Coming from the bottom left and continuing
to the top right (in the image), the robot is quickly raising its
head and then falling over – either onto its back or back to
the front again. This can be seen in the two bottom images
by the isolated blue dots which correspond to impacts of
the robot’s body. Obviously, the manifold has borders which
correspond either to the joints’ end positions, or to unstable
body positions. In the former case we are just stuck, whereas
in the latter case, we fall off the manifold and back onto it to
another place.

The two images on the right side are analogous to the left
ones, but describe the robot starting from lying on its back.
The darkest blue positions correspond to the robot performing
a headstand. Due to the leg length and slow motion, the robot
is not able to do a backward somersault on the ground. When
speeding up the motion, this is indeed possible.

Summing up, the manifold Mr, which describes SEMNI’s
capabilities during moderately slow motions, is already com-
plex enough to be of interest for building up an implicit body
model. As we will see later, only few QRENs are needed to
accurately capture Mr.

-
ϕh

6ϕk

Figure 3. A sampled version of the manifold Mr of the robot SEMNI,
situated on a flat ground. It indicates the body posture (xy-coordinates) and
body position relative to the ground (color-coded). See text for an explanation.
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B. The Humanoid Robot Myon

Since the shape and configuration of SEMNI is rather
uncommon, we choose a more standard scenario for additional
tests of the QRENs. The humanoid robot Myon is a modular
research robot, the body parts of which can be detached and
reattached during run-time, since they all possess their own
processing power and energy supply. Figure 2 shows Myon
composed of three body parts, namely the torso, the head,
and the right arm. This is the experimental setting we used to
record sensory data when the arm was moving, while the end
of the arm was touching the table.

IV. EXPERIMENTS AND RESULTS

In order to put the QRENs to test, we first recorded sensory
data of the robot SEMNI while it was touching the ground
with both feet. This is a somehow artificial situation, since
only part of the poses are stable and we had to hold the robot
still in place to get the rest of the data. The result can be seen
in figure 4. This is obviously an elliptic hyperboloid of the
kind shown in middle of figure 1.

We then attached a QREN to the behavioral primitive
standing-on-the-ground-with-both-feet by fitting the corre-
sponding weights using a least squares approach. The weights
are shown by the crosses in figure 5. To check the quality of the
fit, we calculated the QREN’s kernel function for the original
raw sensory data, sorted the results in descending order, and
plotted the result in figure 6. As can be seen, the QREN quite
nicely fits the original data – the error remains small, even
without having filtered the raw sensor values beforehand.
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Figure 4. Sensory data of the robot SEMNI which has been recorded while
the robot was touching the ground with both feet, like shown in figure 2.
The xy-plane encodes the angular position of the joints in the same way as
in figure 3. The z-axis shows the body’s angle relative to the ground, the
standing position being at z = π/2.

A. Using Massively Reduced Data Sets

The weight vector contains nine free parameters, so only
nine out of the over 30.000 data values are sufficient to fully
specify the QREN. In order to find out how much the weight
vector varies depending on the data sample, we randomly
picked nine data values and calculated the weights. This has
been repeated 50 times and plotted together, as shown in figure
7. Obviously, there is not much variance, since the sampled
values are far apart by chance. The subset-depending weight
vector variance is of more behavioral relevance, if the subset
is not spread over the whole raw values, but localized. This is
equivalent to sampling the stream of sensor values over a short
time period, where the pose of the robot does not change too
much. We used the lower corner of the hyperbolic ellipsoid,
as the robot passes through this part during exploration (see
figure 3). The used subset is shown in figure 8 and the
result can be found in figure 5 by comparing the crosses (full
data set) with the solid dots (localized subset of the data).
The differences are almost unnoticeable, which illustrates the
QRENs’ excellent extrapolation characteristics. This in turn
allows for feeding the very first quadric estimates back to the
control of exploration – the QRENs can very soon help to steer
the direction of exploration.
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Figure 5. Crosses: weight vector of the elliptic hyperboloid which optimally
fits the robot’s sensory data. Solid dots: weight vector found by the least
squares approach when using only a small subset of the data.
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Figure 6. Values of the QREN’s kernel function for all original sensor values,
sorted in descending order. The error remains small, even without having
filtered the data.
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Figure 7. The weight vector does not change very much when only nine
random samples from the whole data set are drawn for parameter calculation.
The process has been repeated 50 times.
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B. Fitting the Quadric of a Moving Arm

Next, we used the angular data which we recorded using
the arm of the humanoid robot Myon, as shown in figure 2.
The arm was moving in all directions, while the end of the
arm was touching the table all the time.

The raw sensory data is shown in figure 9 and reveals part of
an ellipsoid. The corresponding weight vector can be found in
figure 10. Although the raw data forms less than one eights of
a full ellipsoid, again, the quadric which has been fitted by the
QREN is as close to the sensory data as in the former case of
the hyperboloid. Due to the limited space, we do not explicitly
show the model and the quality of fit here. Interestingly, we
also got an ellipsoid when used the acceleration sensors instead
of the angular ones.

C. Quadric-Based Movements

Since QRENs represent quadrics that encode an implicit
body model of a robot given in a specific environment, they are
of behavioral relevance. As it turns out, the weight vector of a
QREN can be used in a straightforward manner to purposefully
control a robot’s motion.
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Figure 8. Localized subset of the full sensory data which has been used to
test the QRENs’ extrapolation abilities.
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Figure 9. Raw angular sensor data of the three joints of Myon’s right arm,
as shown in figure 2. Obviously, the data can be modeled by an ellipsoid.
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Figure 10. Weight vector of the ellipsoid which best fits the sensor data of
Myon’s moving arm.

The following example will illustrate this. Say we want the
robot SEMNI enable to sit-up from arbitrary starting postures.
There are many target positions for the robot to stand upright
and they all lie on the hyperboloid shown in figure 4. To be
more precise, they satisfy the two conditions:

wT f3
(
(ϕh ϕk ϕb)

T
)

= 0, (7)
ϕb = π/2. (8)

Using the well-known gradient descent, we control the
voltage of the hip actuator (Uh) and of the knee actuator (Uk)
as follows:

Uh = −µwT f3 (x̂)
dwT f3
dϕh

(x̂) , (9)

Uk = −µwT f3 (x̂)
dwT f3
dϕk

(x̂) , (10)

where µ is a fixed motor constant and

x̂ = (ϕh ϕk
π

2
)T (11)

is the current posture, but with ϕb clamped to the desired
target value. Of course this approach can also be used to define
arbitrary targets, e.g., stretching the leg (ϕk = 0).

Figure 11. Series of snapshots (top to down) illustrating two different sit-up
motions of the robot SEMNI. Left column: Starting with the robot’s front side
facing the ground. Right column: Starting with the robot’s front side looking
away from the ground.
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For the experimental setup with the robot Myon this would
include lifting the arm to arbitrary heights above the table.
Of course sensory signals from the vision system need to be
recruited during the learning process in first place, but after
that the robot is able to reach a target position blindly.

Figure 11 shows the results after implementation of the
aforementioned motion control loop. The robot successfully
sits up from different starting postures and, as a consequence,
also stops in an upright position with different leg postures.
The motion trajectories are highly efficient in the sense that
as less movements as possible are being executed.

D. Speeding Up the Learning Process

As already mentioned above, a standard competitive neural
network, where only the winning QREN is updated by the delta
rule, will learn the manifold of a robot, like the one shown
in figure 3. Using the sensory information in a smart way,
one can considerably speed up the learning process. Figure
12 shows the impacts of SEMNI’s body. They are derived
from the acceleration data. Since we used a moderately slow
motion for the exploration of the robot’s behavioral manifold,
those impacts can only be due to jumps off and back onto
the manifold (also see the isolated dots in figure 3). This
information can be used to introduce new QRENs in early
stages of the learning process.

Another strategy uses the current sensors of each actuator:
Whenever a stall current situation is detected, a specific QREN
is learned. This QREN will soon anticipate self-harm of the
robot and most likely be representing a quadric with two
parallel planes, as shown in figure 1, right. Finally, referring to
the QREN’s excellent extrapolation characteristics, and using
the quadric-based motion control we introduced, it is a good
idea to explore the manifold QREN by QREN. This reduces
the amount of impacts which could potentially harm the robot,
and, at the same time, improves the accuracy of the QREN
which is currently active.

V. CONCLUSION AND OUTLOOK

We have formally introduced QRENs and given experimen-
tal evidence that they are able to implicitly model different
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Figure 12. Sensory information of the type shown here can be used to
speed up the learning process. Top: Squared sum of the three perpendicular
acceleration forces minus the squared static value of the earth’s gravitation.
Bottom: Smoothed and normalized absolute value of the above curve.

body morphologies and motion capabilities. QRENs can be
learned using standard methods, but we also outlined how sen-
sory information can be used to speed up the learning process.
For a single QREN first results concerning the dependence
on the data set have been presented. They show the QREN’s
robustness and extrapolating capabilities.

There are two very promising directions, we would finally
like to comment on. First, when modeling behavioral manifold
by multiple quadrics the latter will intersect. So-called QSICs
(Quadric Surfaces Intersection Curves), see [13] for a clas-
sification, show up. Those QSICs are behaviorally of special
interest, because a robot who will spend most of its time on
QSICs will have better options of quickly doing one or the
other.

Second, the scalar output of a quadric can serve as a
virtual sensor. We intend to use this approach for the modular
humanoid robot Myon. If a QREN is able to encode the
behavioral condition, that a leg or arm stands upright (like
shown with the robot SEMNI), the scalar output of another
QREN can encode the height of the limb relative to the ground
(like with the arm of Myon). This way, QRENs inside the
torso can make use of this virtual sensor information to model
crawling, walking, and the like.
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Multi-Modal Local Sensing and Communication
for Collective Underwater Systems

Serge Kernbach, Tobias Dipper, Donny Sutantyo

Abstract— This paper is devoted to local sensing and com-
munication for collective underwater systems used in net-
worked and swarm modes. It is demonstrated that a specific
combination of modal and sub-modal communication, used
simultaneously for robot-robot and robot-object detection, can
create a dedicated cooperation between multiple AUVs. These
technologies, platforms and experiments are shortly described,
and allow us to make a conclusion about useful combinations
of different signaling approaches for collective underwater
systems.

I. I NTRODUCTION

Underwater exploration represents a very important eco-
nomic, technologic and scientific challenge. This is closely
related to Arctic and Antarctic offshore resources, pollu-
tion monitoring, general oceanographic data collection and,
recently, to underwater actuation [1]. Due to very large
underwater areas and high damping properties of water,
application of multiple Autonomous Underwater Vehicles
(AUVs) in cooperative missions seems very promising [2].

For application of AUVs in networked or swarm mode,
there is a number of crucial issues: underwater sensing
and communication (S&C), cooperation and mission control,
design of AUV platforms, autonomous behavior and several
collective aspects of running multiple AUVs. In this work
we concentrate on local S&C, and related coordination
strategies, being motivated by the following reasons [3].

In several past and running projects devoted to underwater
swarms, such as AquaJelly [4], Angels [5], CoCoRo [6],
a number of AUV platforms and sensing technologies has
been developed. These works indicated two important issues:
a successful AUV platform needs a dedicated combination
of different S&C technologies, moreover capabilities of
underwater cooperation depends on the level of embodiment
of on-board S&C systems. In several cases, even a simple
multi-modal signal system leads to advanced cooperation [7].

Since swarm approaches rely primarily on local inter-
actions between AUVs [8], the paper is devoted to local
S&C systems (unmodulated and modulated IR/blue light, RF
and electric field), which can be used for robot-robot/robot-
object detection and provide sub-modal information, such as
direction and distances, as well as can be used for analog and
digital communication. These systems, developed for each
of the platforms is described in Sec. III, whereas Sec. II
provides general overview over different S&C technologies.
In Sec. IV we shortly sketch a few behavioral experiments

Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitätstr. 38, 70569 Stuttgart, Germany, emails{Serge.Kernbach, To-
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with these systems and finally in Sec. V conclude about
useful combinations of S&C and their embodiment for
collective underwater systems.

II. COMPARISON OF DIFFERENTS&C SYSTEMS

In this section we give a short overview over different
state-of-the-art S&C systems in an underwater environment,
see e.g. [9]-[10]. Four systems will be compared:

• Sonar: Sonic waves travel very well under water and
the energy and build-space required for generating and
receiving them is very low. This approach is used in
so-called acoustic modems [11]. Drawbacks of this
approach are, firstly, the relatively low sound travel
speed of roughly 1500 m/s (much slower than any
other S&C system), and, secondly, multiple reflections
causing essential distortions in the signal.

• Radio: Electromagnetic waves are a standard communi-
cation method in air; its application under water creates
several problems [12]. Due to water connectivity, the
attenuation of radio waves depends on the used fre-
quency, which in turn results in the size of antenna. High
frequencies (> 100 MHz) only need a small antenna
(0.1 m) while their range is restricted to2.5 m. Lower
frequencies (100 kHz) have a long range (100 m), but
need a large antenna (100 m).

• Optical: Using light as a communication channel can
provide a compact size of transmitting equipment and
acceptable range [10]. Due to the color dependent
attenuation of light in water, the communication range
varies between a few centimeters in IR spectra and
increases to over a meter by using blue or green light.

• Electric Field: This is a new communication approach.
It bases upon generating and measuring electric fields.
The build-size and energy required for this system is
very small. Unfortunately the attenuation of electric
fields is very high, liming the range of this commu-
nication channel to less than 1 m. We will discuss this
approach in Sec. IV-B.

Table I shows an overview of the discussed approaches.
Since the used AUVs operate in a swarm mode (large
number of AUVs, full decentralization, utilization of swarm
approaches for coordination, see more in e.g. [13]), in this
paper we concentrate on a local S&C approaches. The S&C
is defined as local, when the communication rangeRc (i.e.
communication volumeVc = 4/3πR3

c) does not overstep
the second-next-neighbors at average swarm densityDsw =
N/Vsw, whereVsw is the volume occupied by AUVs and
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Channel Attenuation Antenna Size Range
Sonar (30 kHz) 0.3 dB/m 0.1 m 300 m
Radio (100 kHz) 1 dB/m 100 m 100 m
Radio (1 MHz) 4 dB/m 10 m 25 m
Radio (100 MHz) 40 dB/m 0.1 m 2.5 m
Optical unmodul. (IR 800 nm) 10 dB/m 0.1 m 0.25 m
Opt. modul. (PCM IR 800 nm) 10 dB/m 0.1 m 0.5 m
Optical modul. (blue 460 nm) 1 dB/m 0.1 m 1.2 m
Electric Field (2.5 kHz) 100 dB/m 0.1 m 1 m

TABLE I

COMPARISON OF DIFFERENT COMMUNICATION CHANNELS

N is their number. Local communication rangeRc can be
approximated by

Rc =
3

√

Vsw

N4/3π
, (1)

where forVsw = 5m3 andN = 20,Rc is about 0,4m. For the
platform size 10-15cm, this results in 3 to 4 times the robot
length. Generalizing the AUV size up to 50cm, we assume
that Rl

c within 0,5-1,2m are local, whereasRg
c capable to

cover the wholeVsw, i.e. 3-4m, are global. In the following
sections we consider the developed optical and electric field
S&C approaches which are related toRl

c.

III. L OCAL S&R APPROACHES

A. Multi-modal Optical System

As the first developed approach for combined S&C within
Rl

c, we describe a specific bi-modal directional optical
system, which underlies cooperative behavior of AquaJelly
robots [4]. AquaJelly was a project between Festo AG &
Co. KG (coordinator and founder), Effekt-Technik GmbH,
and University of Stuttgart intended to create a swarm (N =
20−30 robots) of autonomous underwater robots, capable of
multi-modal interactions and underwater recharging. Robots
have been developed and manufactured within a very short
time of 8 months in 2007-2008.

Fig. 1. AquaJelly robots.

Technical requirements define robot-robot, robot-docking-
station, and collisions recognition; cooperative collision
avoidance; several types of cooperative behavior around
docking station, and vertical movement of robots (robots
possess only vertical DoF with a balancing mechanism; this
allows an inclined vertical movement). Due to visual effects,
which are one of the main developmental goals of this

platform, it was decided to use unmodulated blue light. Since
several communication approaches should remain invisible
for human observers and to make the system more stable
to different illumination conditions, it was decided to use
additionally 36kHz modulated IR light. The platform pos-
sesses also very sensitive pressure and temperature sensors,
3D accelerometer and energy sensor (additional RF system
was used for a backup communication with the host). The
energy part consisted of 4A/h LiPo accumulator with a
power management circuitry and Hot-Swap controller for
underwater recharging. Due to low energy consumption, the
autonomy lies between several hours and with autonomous
recharging is theoretically unlimited.

3D omni-directional communication and sensing was one
of the main technical requirements. Blue light and IR sensors
are used in different ways. Since IR light is more dumped
in water, IR channels are very useful for a short range
directional communication. Blue light channels are used
as unidirectional system, which was mainly used for nav-
igation approaches based on optical pheromone. To enable
directional communication, the original platform has 11 IR
emitters and receivers with integrated PCM decoder, see
Fig. 2.

IR
Blue

TOP

Fig. 2. (Top-left) Placement of IR and blue light sensors in the top of the
ring; (Top-righ) Molded ring in white polyurethane;(Bottom) Experimental
measurement for IR communication/sensing.

Spatial displacement has an important role, so sidewise
IR emitters and receivers are set up each 60 degrees and
separated through thick a black-colored PCB on TOP and
BOTTOM sides. Three IR sensors are positioned down-side
and two up-side. Six blue light LEDs are installed on the
top of the platform and through mate cover created almost a
homogeneous ”light ball” around the robot. All 17 commu-
nication channels are independent from each other through
an analog multiplexor. To make the platform waterproof, the
ring with all sensors was molded in polyurethane. Blue light
system has been used in analog mode, whereas IR used
a digital PCM-modulated signal. All sensors are directly
connected to I/O pins of the Atmel MCU, which can provide
around 8-10mA current at 3V, opening angle of all LEDs is
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about 10 degrees. Communication range of modulated IR
is about 0,5m, see Fig. 2. Due to passive PCM filter, the
communication range was fixed on this distance and used in
4kbps communication mode. Average range of the analog
blue light system is about 1-1,3m and can be varied by
regulating intensity and number of LEDs.

The main idea for using two different optical systems was
a split between analog gradient-based interactions between
robots (visible for human observer) and digital channels
used for robot-objects interactions and for communication,
which synchronizes internal states of robots and docking sta-
tion (invisible for observers). Thus, a combination between
analog omni-directional ”long-range” and digital directional
”short-range” optical systems used in different modifications
AquaJelly robots allowed a wide range of different sensing
and communication approaches, which result in interesting
cooperative behavior of these platforms, see Sec. IV.

B. Modulated and Encoded Blue Light

As a further development of the S&C system, described
in the previous section, we intend to use only one light
system with modulated blue light for both robot-robot/object
detection, distance measurement and digital communication.
Digital optical communication is widely used due to its
high bandwidth. However, the absence of gradient-based
optical guide for sensing and localization makes the digital
system less suitable for navigation purposes. Therefore spe-
cific protocols are required to extract sub-modal information
about distances and orientation from the digital channel.
The table II shows our underwater measurement results
that compare the common modulated IR and blue light
communication in many modulation types at the bandwidth
of 119kbps.

Modulation Transducer Maximum Communication/Sensing
direct Infra-red - / -
IrDA Infra-red 7 cm / 0-5 cm

TV Remote Infra-red 5 cm / 0-5 cm
QAM Infra-red 12 cm / 0-5 cm
direct Blue LED 20 cm / - / -
IrDA Blue LED 60 cm / 0-5 cm

TV Remote Blue LED 45 cm / 3-8 cm
QAM Blue LED 120 cm / 7-12 cm

TABLE II

RANGE OF UNDERWATER OPTICAL COMMUNICATION FOR119KBPS.

As a digital communication transceiver, the blue light
system needs modulator, amplifier, signal conditioner, and
protocol encoder/decoder. The one chip solution can be
solved by using a CS 8130 IrDA chip from Cirrus Logic.
Since the blue light system has a directional S&C, two chan-
nels are not sufficient for the swarm robot to communicate
in every direction. The half duplex behavior of each channel
makes one channel unable to be applied for sensing, because
the sensing mechanism requires to transmit and to receive
the sensing signal in one time. Therefore, the position of
the transmitter and receiver are swapped with neighboring
channels for sensing application.

The system must be configured and calibrated for finding
the best modulation type for underwater communication

and sensing. According to the measurement results, both
for communication and sensing, the Quadrature Amplitude
Modulation (QAM) seems to be the best modulation for
underwater application. Fig. 3(a) shows the relation between

(a) (b)

Fig. 3. (a) Distance measurement with QAM blue light;(b) Active Sensing
Algorithm.

current sensitivity and communication distance. By using
this curve, an active sensing algorithm can be added to the
inter-robot communication algorithm by varying the ampli-
fication and the sensitivity of the programmable amplifier
via software, see Fig. 3(b). The robot can approximate
the distance with other robots by gradually decreasing the
current sensitivity while communicating each other. The
developed inter-robot communication algorithm has three
phases. First, when two robots are in the communication
range, they begin to establish the communication by sending
their IDs to each other. Second, the communicating robots
are approximating their distance by gradually decreasing the
current sensitivity within the programmable gain amplifier.
Therefore, after knowing their own position, behavioral or
cooperation phased can be performed. A robot will continu-
ously iterate the first phase if there is no other robots in the
communication range. Hence an obstacle might reflect the
transmitted signal and the robot would receive back the first
phase communication packet that contains its own ID.

C. Electric Sense

After experimenting with optical S&C systems, we im-
plemented another approach, which is inspired by weakly
electric fish. These animals are capable of producing an
electric field which they can use for localisation and commu-
nication [5]. Here we try to use this bio-inspired approach
for analog communication and navigation in robot swarms.

Electric fields. Electric charges generate electrical fields
in their vicinity. Electric fields are vector fields. For a point
chargeQ the field intensity~E can be calculated at each point
~r as

~E =
Q

4πǫ0ǫr
·

~r

r3
(2)

with the permittivitiesǫ0 (vacuum) andǫr (relativ) [14].
The field vectors of multiple point charges follow the

superposition principle. In our robot the electric field is gen-
erated by a dipole. The field intensity is proportional to the
charge in the electrodes, which themselves are proportional
to the applied voltage to the electrodes:

Q = C · U (3)

with the voltageU and the capacityC.
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Communication. The intensity of an electric field can
then be detected by measuring the differential potential
between two electrodes in the field. This potential is propor-
tional to the electric field intensity, which itself is propor-
tional to the output voltage of the sender. By modulating the
output voltage of the sender, information can be transmitted.

Localization. By using multiple pairs of electrodes in the
receiver it is possible to calculate the bearing and distance
to the sender. This is achieved by utilizing the drop in
field intensity with relation to the distance. A sinus wave
is impressed on the sender’s electrodes which creates an
oscillating electrical field. The field intensity depends mainly
on the amplitude and frequency of the output voltage and
some environmental conditions. The amplitude in the field
intensity at a specific point~r is proportional to the amplitude
of the output voltage:

u(t) = ao · sin(ωt) ∼ E(t) ∼ ai · sin(ωt) ·
~r

r3
(4)

with the amplitude of the output signalao and measured
input ai, the frequencyω and the timet.

If sender and receiver are approximately in the same plane
and the electrodes have the same orientation (compare Fig.
4 left) (4) can be simplified to:

ao · sin(ωt) = ai · sin(ωt) ·
F (ω)

r2
(5)

with the frequency dependent proportionality factorF (ω)
and the distancer between sender and receiver. Measuring
the sinus amplitude (a1, a2, a3, a4) at four points with
a specific geometrical pattern (Fig. 4 right) leads to the
following equations:

a1 = Ao

F (ω) ·
1

(r−s·cosα)2 , a2 = Ao

F (ω) ·
1

(r−s·sinα)2

a3 = Ao

F (ω) ·
1

(r+s·cosα)2 , a4 = Ao

F (ω) ·
1

(r+s·sinα)2

(6)

sender
receiver

1

2

3

4
s

r

x
y

a

Fig. 4. Position and orientation of sender and receiver electrodes, top-(left)
and side-view (right)

In setting up these equations it is assumed thatr >> s
so that the error in the angleα and distancer between the
different sensors is minimal. In (6) the proportional factor
and output amplitude can be eliminated, under the condition
of r > s leading to:

r = s · cosα

√

a1/a3 + 1
√

a1/a3 − 1
︸ ︷︷ ︸

u1

, r = s · sinα

√

a2/a4 + 1
√

a2/a4 − 1
︸ ︷︷ ︸

u2

(7)

and
α = arctan

u1

u2
(8)

Design limitations. This approach has two design limita-
tions: it requires the sender and receiver electrodes to have
the same orientation (i.e. vertical) and to be roughly in the
same plane (horizontal to the orientation):

• The first limitation holds no practical difficulties. Our
robot maintains a specific orientation, caused by its
center of gravity. By placing one of the sender and
receiver electrodes on top and one on the bottom of
the robot the orientation is always vertical.

• The derivation above is only correct if sender and
receiver are on the same plane, which is horizontal to
the orientation of their electrodes. In a three dimensional
environment this is not always true, but usually the
working space is wider than it is high, even in a 3D
environment.

Even so, we are working on overcoming these limitations.
We are confident that the second can be eliminated by
rearranging the receiver electrodes. To overcome the first
limitation additional electrodes may be needed.

IV. EXPERIMENTS

As described in the previous sections, different local S&C
systems utilize the same hardware components for sensing
and communication. Moreover, they use modal and sub-
modal approaches, which provide not only message trans-
mission, but also deliver spatial information about position
and distances of robots and objects. In this section we de-
scribe several behavioral experiments, performed with these
systems.

A. Experiments with Bi-modal Optical System

One of the implemented scenarios with AquaJelly robots
had the following form, see Fig. 5. In water, a robot sends
sequentially in all IR channels its own ID. Listening and
sending times are selected as approx. 95% listening and 5%
sending, so that all robots most of time silently observe the
environment. Receiving another-than-own ID means meeting
another robot, whereas non-ID IR light means own reflection
from passive objects. Granularity of IR channels is enough
for rough collision avoidance with objects, e.g. walls of
the aquarium. Collision avoidance based on digital channels
are impossible for more than two robots (or robot and
object). In opposite, blue light channels emit almost all time.

Fig. 5. Experiment with collective decision making during the docking
approach.

Since light has additive properties, when two robots meet
each other, intensity of light in the point of light-spheres-
intersection creates a light gradient and can be locally
sensed by both robots. Especially interesting is the light
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gradient when several robots meet each other; they create
complex gradients, which can be used for precise multi-robot
navigation. Unfortunately, blue-light sensors continuously
receive signals from their own light sphere so that no efficient
communication is possible in this mode.

Initially all robots are fully charged. When a robot has
a low energy value, it swims up and recharges. With the
progress of experiment, more and more robots swim up for
recharging. In this way, several robots meet in the upper
part of the aquarium and compete for the docking station,
see Fig. 5(from left to right). Since only a robot with
lowest energy value should recharge, all robots bilaterally
exchange values of their own energy level. The robot with
the lowest energy value can swim up. This local behavior
leads to the following interesting collective behavior. Due
to light gradient created by many robots, all robots exert
“optical pressure” on each other, and collectively swim
down, whereas only one most ”hungry” robot swims up and
recharges, see Fig. 5(right).

B. Experiment with Encoded Blue Light

In order to investigate the modulated blue light S&C
system, we used underwater submarine toy as a mechanical
platform with new electronic components for locomotion,
computational and S&C capabilities. This submarine has
three degrees of freedom and three actuators for moving for-
ward/backward, turning left/right, and diving up to 1 meter.
The necessary modifications of the submarine including the
replacement of the original electronic parts with the new
designed electronic boards, and drilling some new holes
on the robot’s body for communication/sensing transducers
placements. Cortex3 LM3S316 microcontroller with 25MHz
of clock frequency, 16kb of internal flash ROM, and 16kb
of RAM has been used in the platform. Two motor drivers
and two navigational sensors are placed on the main board
of the electronic platform. The combination of the available
PWM output from Cortex3 and motor driver perform the
ability to control the swimming velocity via software. A
digital compass and pressure sensor are added as a three-
dimensional orientation sensor (an low-frequency RF part is
foreseen for a backup communication with host).

Fig. 6. (Left) Autonomously swimming AUV recognizes obstacles with
the digital S&C system (active sensing);(Right) Experiments with digital
communication.

During the experiment, robot is deployed into the aquar-
ium fulfilled with several obstacles. The available obstacles
and aquarium’s walls are used to examine the sensing capa-
bility, see Fig. 6(left). Both types of obstacles have different

type of optical characteristic, which create different reflection
behavior for the blue light. Therefore, white papers can be
put outside the aquarium walls to increase the reflection
capability of the optical sensor.

For testing the communication and active sensing ca-
pabilities, one robot is deployed underwater and a static
encoded blue light transceiver is installed on the aquarium
wall as a measurement reference point, see Fig. 6(right).
The static transceiver can illuminate several type of light
signals if it receives a specific blue light packet data from the
swimming robot. Different types of blinking signals are used
to examine the functionality of the active sensing capability.
This approach underlies several other experiments, where
a few passive robots are identified by one active AUV as
foraging targets.

C. Experiment with Electric Field

The circuit for electric field communication is very simple.
It consists mainly of a digital-analog-converter (DAC) for
the sender and four amplifiers (OP) with analog-digital-
converters (ADC) for the receiver (Fig. 7).

• Sender:The output of the 14-bit DAC is directly tied to
one of the sender electrodes while the other is connected
to VCC/2. The electrodes are in direct contact with the
surrounding water. The output of the DAC can be set
to a voltage between GND and VCC. This setup allows
control of the field intensity and polarity.

• Receiver:The receiver has four pairs of electrodes in
the water to measure the difference in the potential
of the electric field in four places. The electrodes use
capacitors as highpass-filters to filter DC signals. The
signals are amplified by differential OPs (magnitude
1000) and digitized by 14-bit ADCs.

For the experiments the sender and receiver are put under
water (Fig. 4 right). The receiver has a sampling rate of
10 kHz. The measured data is transmitted to a PC, where
the bearing and distance are calculated.

Fig. 7. Experiment electric field: test circuit, video stream, calculated
bearing

In the experiment the sender was moved around the
receiver and the received data was recorded together with
a video tape of the experiment for comparison (Fig. 7).
The true bearing was extracted from the video stream and
compared with the from the electrical sensor data calculated
bearing. Fig. 8 shows the result.

For 50% of the measuring points the error is less than 5◦

and it exceeds never more than 15◦. This might be further
improved by increasing the magnitude of the amplifiers and
reducing the noise through optimized circuits and digital
filters.
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V. CONCLUSION

In this work we considered several optical and electric-
field-based approaches for sensing and communication
within Rl

c. Together with S&C approaches forRg
c , such as

acoustic and low-frequency RF, they represent the available
spectra of S&C technologies for underwater networked and
swarm robotics. As indicated in the Sec. IV and from other
performed experiments, these approaches combine commu-
nication with localization, distance measurement and object
detection. In several cases, such a sub-modal information is
available even during communication and can be used for
very efficient behavioral strategies.

Each of the considered S&C system has its own benefits
and weaknesses. It seems that no current single system is
capable of achieving all the requirements onRl

c/R
g
c , sensing,

minimal build space, energy consumption and complexity.
Therefore the best approach lies in combining several of
the available systems, for example in the way shown in
Fig 9. The optical system provides split wave-length depen-
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Fig. 9. Combination of different S&C approaches.

dent channels. It can be used in analog and digital mode
with existing control circuits for IR systems (e.g. IrDA or
different modulations e.g. PCM/QAM), which with small
modifications can be used for green, cyan and blue light. The
range and bandwidth are sufficient for local communication.
The channel is directional which can be of benefit for swarm-
based coordination approaches. Additionally the reflection in
analog mode can be used for navigation and detection tasks.

The electrical sensor is a good supplementary element to
directional optics. Electric fields-based channels are omni-
directional; hardware required for generation and detection
of electric fields utilizes off-the-shelf components and is
compact and energy efficient. It can be used to calculate the
bearing between sender and receiver, i.e. for self-localization.
The range is small but sufficient forRl

c.

It is also necessary to supplement these S&C systems
by acoustic or ultra-low-frequency RF to provide global
communication. Sonar requires a bit larger hardware equip-
ment than the optical system. With additional components,
it can be used for measuring distances to obstacles. RF
systems represent a trade-off between the frequency (i.e.
communication distances) and the size of integrated an-
tennas (i.e. the size of platform). The control circuits are
more complex than those for optic or acoustic approaches.
Since bandwidth for low-frequency RF is not sufficient for
application of standard protocols (e.g. ZigBee), global RF
communication represents some open problems. If more
than one receiver is used, the bearing between sender and
receiver can be calculated. However this would make the hole
system more complex and expensive. Comparing acoustic
and low-frequency RF approaches forRg

c , acoustic one is
more favorable due to more less complex hardware. Usage
of global communication for networked and swarm systems
should be reduced to absolute minimum.
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Abstract—Using robotic simulators, researchers are able to 
improve the algorithms of their robotics platforms before testing 
them in real environments. In fact, the safe environment 
provided by simulation is important, especially for robots that 
are constantly in contact with human beings, such as assistive 
robots and intelligent wheelchairs. Here, we propose to take 
advantage of an available general robotics simulator to model the 
IntellWheel’s intelligent wheelchair prototype and its 
environment, enabling patient’s drills and creating a test bed to 
refine and to experiment new methodologies of autonomous 
navigation, obstacle avoidance and human-machine interaction. 
As a result of the evaluation of four general simulators, the 
USARSim simulator has demonstrated to be more suitable to 
serve as basis for the IntellWheels simulation prototype. The 
development of a rough model of the intelligent wheelchair and of 
an appropriate test environment proved that with some 
modifications USARSim is able to provide a very realistic 
simulation platform for Intelligent Wheelchairs. 

Keywords- Intelligent Wheelchair, Simulation, Mixed Reality 

I.  INTRODUCTION  

In the attempt of assisting people with mobility problems, 
many research projects of intelligent wheelchairs (IWs) have 
been created over the last years [1]. According to the general 
concept, an intelligent wheelchair can be defined as a robotic 
device built from an electric powered wheelchair, provided 
with a sensorial system, actuators and processing capabilities. 
At the same time, it is assumed that IW may present at least 
some skills such as autonomous navigation, autonomous 
planning, extended human-machine interaction, semi-
autonomous behavior with obstacle avoidance, cooperative and 
collaborative behaviors. Thus, IW may be a good solution to 
assist severely handicapped people who are unable to operate 
classic electric wheelchairs by themselves in their daily 
activities. The aim of this paper is to take advantage of an 
available robotics simulator to model an intelligent wheelchair 
and its behavior, in order to create a test bed for new 
methodologies of autonomous navigation, obstacle avoidance 
and human-machine interaction, for instance. 

Up to a recent past the use of simulations for simulating 
IWs (as any robot in general) was quite restricted due to the 
lack of general simulators. Usually, the existing simulators 
were developed to deal with some quite specific situations and 
environments. The development of a new tool for the 

simulation of IWs is time and resource consuming, and 
frequently is out of the project’s scope. However, this reality 
started changing due to the release of general simulators and to 
the advantages of using robotics simulators.  

Simulations have a great potential for low cost analysis, 
since it is able to give researchers access to cost-prohibitive 
sensors and robotic platforms. In addition, simulators provide 
the ability to compress time, and so, to evaluate the results of 
time-consuming experiments much faster. They are 
pedagogically proven technique for training [2], so they can be 
used to drill people in safe environments. They allow testing 
under repeatable and controllable conditions, simplifying 
debugging (e.g. the same scenario can be precisely generated to 
trigger a known error). Unlike real testing environments, which 
may not be accessible, or may only be accessible at certain 
times, simulated environments have unlimited availability [3]. 
For example, experiments that require special natural 
illumination (i.e. sun light) may be accessible for just some 
hours a day, and experiments requiring special weather 
conditions (like fog, rain, etc.) may be accessible just a few 
times a year. Simulations also provide researchers virtual 
access to different testing environments, making these virtual 
testing very cost effictive. Actually, with the right modelling, 
the behavior of the robot can be tested in any environment 
(from a reconstruction of a laboratory up to urban 
environments, desserts, catastrophes, lakes, oceans, others 
planets, etc). Finally, the extensive use of simulators allows 
researchers to safely refine their algorithms before testing the 
robot behaviour in real environments.  Although researchers 
are no more required to develop a simulator from scratch, the 
simulation results just reflect the reality when the simulation 
requirements are considered and when the appropriate models 
are introduced. 

A. Requirements for the simulation of robotic systems 

The requirements for simulating mobile robots may differ 
according to the purpose of the simulation. For testing motion 
control, a higher level of detail in multi-body may be 
important. On the other hand, for testing sensor data 
processing, a higher fidelity in the sensors measures is 
desirible. If the simulation aims to evaluate higher level of 
abstractions, like global localization, ground truth data should 
be provided. If machine vision is used by the robot, a good 
rendering is required.  
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Essentially, simulation requirements can be classified into 
physical fidelity and functional fidelity. The former concerns 
with how the simulation looks, sounds and feels. In other 
words, it is the ability of the simulator to render high resolution 
textures, shaders, lighting and reflection. The second concerns 
with the simulation of most of the forces acting on robots and 
on its actuators, including not only but gravity, dragging, 
accelerations and collisions [4]. 

B. Characteristics of the intelligent wheelchair 

The IntellWheels Project is focused on creating a platform 
to develop intelligent wheelchairs, to help people with severe 
disabilities to live a more normal life. It is mainly concerned 
with the research and design of a multi-agent system to enable 
an easy integration of distinct sensors, actuators, user input 
devices, navigation methodologies, intelligent planning 
techniques and cooperation methodologies. This platform aims 
to facilitate the development and testing of new methodologies 
and techniques, and to integrate it with minor modifications 
into most of the commercially available electric wheelchairs. 
We believe that this platform can bring real capabilities to the 
wheelchairs, such as intelligent planning, autonomous and 
semi-autonomous navigation, thus making it possible to 
execute the desired displacement through a high-level 
command language.  

As depicted in the Fig. 1, the hardware architecture of the 
IntellWheels prototype is composed by a set of encoders, 
ultrasounds and infrared sensors, input controls and by an 
ordinary powered wheelchair. The software platform, as 
illustrated in Fig. 2, relies on a multi-agent system (MAS) 
architecture composed basically by four agents, currently under 
development in Object Pascal [5], [6]. 

In order to achieve that, in Section 2, we will analyse the 
existing robotics simulators to model the IntellWheels 
intelligent wheelchair prototype. Then, throughout Section 3, 
we will discuss about the architecture and the main features of 
selected simulator. In Section 4 we describe preliminary results 
of the simulation, and finally, in Section 5, we will present the 
conclusions and suggested future improvements for this work 

II. RELATED WORK 

Currently, an extensive number of simulators are available 
for robotics research. In [4], Craighead et al. identify the 
weakness and strengths  of 14 commercial and open source 
simulators. 

 
Figure 1.  IntellWheels hardware architecture 

 
Figure 2.  IntellWheels software architecture 

However, in our case, specificities of the IntellWheels may 
be taken into account when choosing a tool to simulate 
intelligent wheelchairs. We also agree with Carpin et al. [7], 
when they claim that the simulation of robotic platforms should 
not consider a robot as an isolated entity, but as an entity which 
interact and is affected by the environment where it is situated. 
Therefore, we have restricted our analysis on four simulators 
that are able to offer these possibilities: Unified System for 
Automation and Robot Simulation (USARSim) [8], Microsoft 
Robotics Developer Studio (RDS) [9], Webots [10] and 
Gazebo [11]. 

A. Criteria for evaluating robotics simulators 

In order select the available robotic simulator that better 
model the IntellWheels prototype, we propose the evaluation of 
the simulator using a set of seven criteria:  

1) Import 3D models – we define this criteria as 
the ability of a simulator to import three-dimensional models 
of objects from typical Computer Aided Design (CAD) 
programs (such as Solidworks, Autocad, Pro-engineer, etc). 
We believe that this ability can facilitate the development of a 
more realistic model, thus improving the simulation. The 
evaluation of this criterion receives “yes” when the simulator 
supports importing objects and “no” when it does not. 

2) Programming language – in this criterion we 
identify which programming languages are supported by the 
simulator to create the program that controls the robot. A wide 
support in the programming langue criteria is desired. In 
addition, we look specifically for a simulator that supports 
object pascal, once the IntellWheels platform is currently 
under development in that language. The evaluation of this 
criterion receives the list of the supported languages. 

3) External agent support – concerns the ability 
to run the agent(s) that control the robot from outside of the 
simulator. This characteristic is desired because we want to be 
able to distribute the agents that control an IntellWheels 
prototype and the agents that provide additional services in 
more than one computer. This way, it is possible to increase 
the robustness of the system, since an agent can assume the 
tasks of other agents that for any reason are not answering. 
The evaluation of this criterion receives “yes” when the 

Proceedings of the 11th International Conference on Mobile Robots and Competitions IST TU Lisbon Congress Center

Page 101 Robotica 2011 is organized with the IEEE Robotics and Automation Society Technical Co-Sponsorship



simulator supports external agents and “no” whenever it does 
not. 

4) Multi-thread support – is the ability of the 
simulator to run more than one simulation task 
simultaneously. This ability is important to improve the 
simulation efficiency. The evaluation of this criterion receives 
“yes” when the simulator supports multi-thread and “no” 
when it does not support. 

5) Physics Engine - concerns the identification 
of the libraries used for computing physics simulation. The 
main task of all physics engines is to solve the motion of the 
system given the forces acting on it. Therefore, they play a 
very important role in the simulation of dynamic systems 
because they are directly responsible for its functional fidelity. 
On the other hand, physics engines have a indirect 
responsibility also in the physical fidelity of the simulation. 
Particularly, the way that a simulation looks is closely 
dependent on the type of features the physic engine is able to 
simulate. For example, simulations with deformable objects 
demonstrate a greater realism over those which consider 
objects as rigid bodies, the simulation of fluids, like fog, may 
be important for machine vision and for video feedback, and 
so on. In subsection 2.2 the weaknesses and strengths of each 
library will be discussed in more detail. The evaluation of this 
criterion receives the name of the library used in each 
simulator. 

6) License – corresponds to the monetary cost 
for the developer and for the end user. The evaluation of this 
criterion can receive the value “Open Source” for those 
simulators that are released with their source code, “free” for 
simulators that are available without any monetary 
compensation and without their source code, and 
“commercial” for those simulators that require monetary 
compensation. 

7) Sensors – in this last criterion we identify 
which sensors are released with the simulators and if the 
simulator allows developers to create new sensors. 

B. Evaluation results 

Each simulator was evaluated through its User Manual or 
equivalent documentation, and results can be summarized in 
Table 1. With the exception of Gazebo, all simulators 
evaluated can import 3D models from typical CAD tools. 
However, when comparing the programming language, only 
USARSim and Gazebo can cope with a wider support. It is 
possible because these simulators rely on a client/server 
architecture with communication through UDP protocol, which 
also provides the support to external agents. Regarding multi-
thread support, only USARSim and Microsoft Robotics Studio 
are able to benefit from the simultaneous task processing. 
Despite several libraries for physics computation available 
(PhysX, Bullet, JigLib, Newton, ODE, Tokamak, True Axis) 
[4], only PhysX and ODE were used by the four robotics 
simulators chosen for comparison. 

ODE (Open Dynamics Engine) is an open-source library 
that is designed for simulations of rigid bodies and articulated 
bodies  dynamics.  For this reason, this library is not able to 
support the simulation of deformable objects, particles and 
fluids. ODE is platform independent with an easy to use C/C++ 
API. The kind of applications ODE was developed for also 
explains some of its characteristics, since ODE was developed 

to support speed, the physics accuracy tends to be 
compromised. On the other hand, PhysX is a proprietary 
solution widely used in Epic games. It provides support to the 
main platforms for games and graphics (such as PS3, XBOX, 
PC, etc.). Its main advantage consists in supporting not only 
rigid and articulated bodies, but also fluids (such as water, 
blood, smoke, gas, etc.) and particles (such as sparks, scattered 
glass fragments, dust, etc.). PhysX has a faster physics 
integration algorithm, and provides a more stable simulation 
when dealing with the collision of several objects [12]. In 
addition to the physics library, nVidia has also developed a 
special hardware device: the Physics Processing Unit (PPU).  

With respect to the license, Gazebo and USARSim are 
open source simulators. At this point, it may be noticed that 
despite USARSim is open source, it relies on a proprietary 
engine and so has a small monetary cost corresponding to the 
Unreal Tournament 3. In its latest version Microsoft has 
combined the previous Express, Standard and Academic 
licenses into one license (RDS 2008 R3) free of charge, while 
the Webots has a commercial license with versions that costs 
from €250,00 Eur.  (EDU version) up to €2600,00 Eur. (PRO 
version). Finally, the analyses of the sensors criteria revealed 
that all four simulators present the basic sensors used in the 
IntellWheels. The only severe limitation was observed in the 
RDS, which does not allow researchers to develop new 
sensors. For these reasons, USARSim was selected to simulate 
the IntellWheels prototypes. We have considered the lack of 
support for Object Pascal of the RDS and  Webots, the 
limitation in the development of new sensors of the RDS, the 
cost of Webots, and the lack to support multi-task processing 
and to import 3D models as the main problems of the other 
simulators. USARSim, on the other hand, presents a superior 
physics engine, has the validation of several sensors and 
actuators and is probably the most used robotics simulator 
within the scientific community. 

III. USARSIM SIMULATOR 

As elegantly described by Carpin et al. [7], “USARsim is a 
general-purpose multi-robot simulator that can be extended to 
model arbitrary application scenarios”. It was designed to 
create physically accurate simulations of robots for research in 
fields like the human-robot interaction and multi-robot 
coordination. The simulator is built upon a commercial game 
engine thanks to the architecture of the Unreal Tournament 3, 
which separates the game logic and rules from simulation 
dynamics and environmental data. This way the game core 
code was reused and applied to a more comprehensive 
simulation, providing USARsim with high realistic visual 
rendering and high performance physics simulation. A further 
advantage relies in the fact that every improvement driven by 
the gaming industry translates directly into simulation 
advantages, which is particularly true for hyper realistic 
rendering and physical simulation [13]. 

The simulator is open source under the GPL licensing, and 
platform independent, running under operating systems like 
Windows, Linux an MacOS. USARSim is highly configurable 
and extensible, allowing users to develop new sensors, to 
model new robots and to create and re-create virtually any 
desired environment. As a consequence of its advantages, 
USARSim has become quite widespread within the scientific 
community, which has released a number of improvements. 
Simultaneously, researchers have published several papers with 
quantitative evaluations that demonstrate a very close similarity 
between the real world and USARSim system and sensors [8]. 
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TABLE I.  MAIN CHARACTERISTICS OF THE MOST USED 3D SIMULATORS 
IN THE ROBOTICS 

Features  USARSim  RDS  Webots  Gazebo 

Import 3D models  yes  yes  yes  no 

Programming language  Any (UDP) 
C#, VB, 
JScript,  

IronPython 

C,C++,Java, 
Python, 
MATLAB 

Any 
(TCP/UDP)  

 External agent support  yes  no  no  yes 

 Multi‐thread support  yes  yes  no  no 

 Physics Engine 
UT3 with 
PhysX 

PhysX  ODE  ODE 

 License 
Open 

Source* 
Free  Commercial 

Open 
Source 

Se
n
so
rs
 

 Camera  yes  yes  yes  yes 

 Touch sensors  no  yes  yes  yes 

 Sonar Sensors  yes  yes  yes  yes 

 Infra‐red  yes  yes  yes  yes 

 Sound sensor  yes  no  no  no 

 GPS  yes  yes  yes  yes 

 RFID  yes  no  no  yes 

Laser Range 
Finders 

yes  yes  yes  yes 

Create new 
sensor 

yes  no  yes  yes 

 
The Unreal Engine is responsible for the sound, physics 

engine (collision detection and collision response), scripting, 
animation, threading, streaming, memory management and for 
rendering 3D graphics. On the initialization of the simulator, 
the Unreal Engine loads the set of geometrical models that 
describes all the objects in the simulation environment. For 
each object it is possible to specify its shape, colour and texture 
(among other properties). In addition, the Unreal Engine also 
loads a set of classes of compiled scripts that govern the 
behaviour of loaded models [14].  

However, once the Unreal Engine is proprietary, it is not 
possible to establish a straight communication between the 
clients and the server. Instead, all the information exchange (in 
both directions with the engine) may occur through the 
network by means of a middleware application called 
Gamebots. The client side includes the Unreal client and the 
controller or the user side applications. Unreal clients are 
responsible for providing video feedback, rendering the 
simulated environment. The whole system architecture is 
depicted in Fig. 3. 

A. Communication and control 

All communication between the controllers and the Unreal 
Server is made through Gamebots. This middleware opens a 
TCP/IP socket for communication, allowing up to 16 
connections (by default). The communication follows the 
Gamebots protocol, which is divided into Messages and 
Commands, following the structure: 

data_type {segment1} {segment2}… 

Where:  ‘data_type’ specifies the type of the data and 
‘segment’ specify the list of name/value pairs. 

In Gamebots, Messages are a specific type of 
communication that contains information about the robot state 
(data_type = STA) or about the sensor data collected 
(data_type = SEN). On the other hand, commands contain 
instructions to control the world (data_type = INI), the robot 
(data_type = DRIVE), the camera (data_type = CAMERA) or 

robot’s sensors (data_type = SENSOR). The main commands 
used for controlling a simulated intelligent wheelchair are 
briefly described above: 

1) Init - This command adds a robot to the 
simulation, and is instantiated as: 

INIT {ClassName robot_name} {Location x,y,z} 

Where: {ClassName robot_name} ‘robot_name’ is the class 
name of the robot and {Location x,y,z} ‘x,y,z’ is the stat 
position of the robot in Unreal Unit. 

2) Drive - This command is used to control the 
left and right side wheels, on a percentage of  maxValue: 

DRIVE {Left float}{Right float}{Light bool}{Flip bool} 

Where: {Left float} ‘float’ is the spin speed for the left side 
wheel and {Right float} ‘float’ is spin speed for the right side 
wheel. Their range is –1.0 ~1.0 (move backward and move 
forward respectively). {Light bool} ‘bool’ is the Boolean value 
for turning on or turning off the headlight. {Flip bool} ‘bool’ is 
the Boolean value for flipping the robot. 

3) Camera – This command controls the robot 
camera orientation and focus. 

CAMERA {Rotation pitch,yaw,roll} {Zoom int} 

Where: {Rotation pitch,yaw,roll} ‘pitch,yaw,roll’ is the relative 
value or absolute rotation angle of the camera. {Zoom int} ‘int’ 
is the zoom value. Positive values means zoom in, while 
negative values means zoom out. 

B. Sensors 

In USARSim, each virtual sensor is treated as an instance 
of a sensor class. Despite all the objects of a sensor class have 
the same sensing capability, it is possible to configure each 
sensor individually with different parameters (e.g. noise, 
distortion), allowing them to be simulated as close as possible 
of their counterparts in real systems. In addition, it is also 
possible to create a new type of sensors derived from a pre-
existing sensor class. 

Currently, just a few classes of sensors were already ported 
from the previous version of USARSim to the new UT3 
version. Among those, we can find three classes of sensors that 
may be used in the simulation of the IntellWheels prototype: 
encoder, ground through and Range Finder sensors. Fig. 4 
depicts the main classes of sensor present in USARSim.  

 
Figure 3.  Architecture of the USARSim simulator (adapted from [8]) 
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Classes of sensors drawn in blue were already ported from 
the previous version of USARSim and are distributed with the 
beta release [8]. Classes in green and purple were not ported 
from UT2004.  However, in order to simulate the full set of 
sensors present in IntellWheels prototype, two subclasses of 
sensor (drawn in purple) were specially implemented in this 
project. A brief description of each class and its main 
characteristics will be presented bellow: 

1) Encoder - This sensor measures a part's spin 
angle around the sensor's axis. The returned value is a tick 
count which is the real angle divided by the sensor's 
resolution. There are three parameters that can be set up in this 
sensor:  

 Resolution: minimum spin angle the sensor can recognize 
[radians] 
Noise: it is the maximum amplitude of the noise [% of the 
truth measure]. The returned value containing the number 
of ticks (NTicks) with noise is then computed through the 
following equation: 

 1 , ∗  

 Wheel: attach the encoder to its respective wheel. To 
perform such set up, one may use ‘W’ followed by the 
wheel number as the name of the sensor (e.g. EncoderW1). 

The output of this sensor is a Message containing the type 
and name of the sensor and the number of ticks: 

SEN {Type Encoder} {Name EncoderW1} {Tick NumTicks}  

2) Ground truth sensor - This sensor returns 
accurate measures of the robots global position and 
orientation. Since it does not introduce any noise in its 
measures, the output data may be used to verify the 
performance of the robots localization algorithms, as well as 
for debugging and for testing high level algorithms (e.g. 
decision, planning, collaboration). The output of the Ground 
truth sensor is a Message with the type and the name of the 
sensor, the position and orientation of the robot at a given time 
stamp (Timestamp): 

SEN {Time Timestamp} {Type GroundTruth} {Name GndTruth} 
{Location x,y,z} {Orientation roll,pitch,yaw } 

3) Infra-red sensor - The IR sensor class 
implements the simulation of Infra-red sensors. This kind of 
sensor is used to detect the distance to the closest point 
(object) that lies on the line from the sensors position with the 
direction of the sensor. A full set up of this sensor includes the 
following parameters: 

 HiddenSensor: Boolean variable used to indicate whether 
the sensor will be visually. 

 MaxRange: maximum distance in which the sensor can 
detect objects [m]. 

 ScanInterval: time difference between two consecutive 
readings.  

 Noise: it is the maximum amplitude of the noise [% of the 
truth measure]. The returned value containing the range 
distance (d) with noise is then computed through the 
following equation: 

 1 ,  

 
Figure 4.  Classes of sensors in USARSim 

 bWithTimeStamp: Boolean variable used to indicate 
whether the time stamp in the output message is included. 

A typical IR Sensor output Message includes information 
about the time stamp (Timestamp), the type of the sensor 
(Range), its name (IR1) and the measured distance 
(DistanceValue): 

SEN {Time Timestamp} {Type Range} {Name IR1 Range 
DistanceValue} 

4) Sonar - Sonar sensor class was designed to 
implement the simulation of ultrasound sensors, following the 
same concept used to implement it in previous versions of 
USARSim (as a series of IR sensors). Thus, data is obtained 
by rotating the sensor step by step (resolution) from the start to 
the end direction (field of view). Finally, the lowest from the 
data gathered by the sensor is then returned in the output 
Message. This presents the folowing parameters: 

 HiddenSensor: Boolean variable used to indicate whether 
the sensor will be visible. 

 MaxRange: maximum distance in which the sensor can 
detect objects [m]. 

 ScanInterval: time difference between two consecutive 
readings [s].  

 Resolution: number of radians of each step [rad]. 
 Noise: it is the maximum amplitude of the noise [% of the 

truth value measured]. The returned value containing the 
range distance (d) with noise is then computed through (2). 

 ScanFov: sensor’s field of view [rad]. 
 bWithTimeStamp: Boolean variable used to whether 

include or not the time stamp in the output message. 

The output message of sonar sensors contains information 
about the time stamp (Timestamp), the type of the sensor 
(Range), its name (Sonar1) and the measured distance 
(DistanceValue): 

SEN {Time Timestamp} {Type Range} {Name Sonar1 Range 
DistanceValue} 
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Figure 5.  GUI of the robot controller  

IV. PRELIMINAR EXPERIMENTS 

In order to run initial experiments of communication 
between the control agent and the simulator we have used a 
robotic platform released with the USARSim simulator. P3AT 
is a skid-steer robot with 50cm x 49cm x 26cm of body size 
and four 21.5cm diameter wheels from ActivMedia Robotic. 
With proper configuration, the robot was provided with a 
camera and a set of eight sonars and eight infrared sensors 
assembled in a semi-circular ring around its body. In order 
receive the feedback from the simulator, a simple Graphic User 
Interface (GUI) was developed (Fig. 5). Through that interface, 
it is possible to create the robot in USARSim, parse the 
message containing the measures of each sensor and steer the 
vehicle in the simulated world. 

V. CONCLUSIONS 

In this paper, we have discussed the benefits of simulation 
in robotics and presented the requirements and characteristics 
for the simulation of intelligent wheelchairs – more specifically 
to the prototype developed in IntellWheels project. A set of 
seven criteria were proposed to assist in the evaluation of 
robotics simulators.  

The results of the evaluation have demonstrated that  both 
RDS and  Webots lack on supporting Object Pascal. Also, RDS 
has a severe limitation in the development of new sensors, and 
Webots has high monetary cost associated. USARSim, on the 
other hand, has demonstrated a superior physics engine and a 
validation of several sensors and actuators. Thus, USARSim 
was selected for simulating the IntellWheels prototype. Once 
some important classes of sensors had not been ported from the 
previous version of the USARSim simulator, we have 
implemented one class for simulating the ultra-sound sensors 
and one class for simulating the infra-red sensors. Preliminary 
results were achieved using a P3AT platform configured with 
eight sonars and infrared sensors. A robot controller was 
developed in order to create and steer the robot in the simulated 
world and to parse the messages received from simulator. 

As future work, we intend to design a realistic model of the 
wheelchair and of a cluttered environment. In addition, with the 
integration of the agents that control the IntellWheels 
prototype, we intend to create mixed reality environments. 
Drills of patients with real wheelchairs in virtual scenarios 
could be performed with increased realism, eliminating the risk 
of injuries and the stress of steering the wheelchair in the real 
environment. Furthermore, mixed reality experiments would 

make it possible to test the real IW in several scenarios (e.g. 
narrow corridors, crowded places, moving objects) in a safe 
(free of collisions with real objects, reducing the risk damaging 
the equipment) and inexpensive way (reduced time demanded 
to create scenarios, and minimum infra-structure cost). 
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