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Abstract

One of the most interesting variations of the problem of the 3-Dimensional Bin Packing Problem
(3BPP) is the determination of the minimum number of three-dimensional rectangular bins that are
required for orthogonally allocating a given set of three-dimensional rectangular items without overlap
and minimizing the occupied space: the 3BPP–min problem. This is, of course, yet another NP-Hard
multi-criteria combinatorial optimization. One of the most obvious applications for this problem is the
one that occurs daily in warehouses management systems, either by using manual or automatic packing.

We present a new approach for the 3BPP–min problem where 90 degrees rotations are allowed in
order to allow for a more compact packing. Most of the known heuristic solutions for this type of packing
are based on the well-known works of Martello, Pisinger and Vigo. Boschetti has recently introduced new
lower bounds specifically tailored for packing using the possibility of rotations of items that we used for
designing the new heuristic algorithm. This algorithm uses both this new lower bounds and the theory
of non-dominated solutions for deciding on the best packing for a 3BPP–min instance. Computational
results show the effectiveness of the new approximation algorithm that shows to be faster and achieve
lower occupation of space, thus, better compaction.

Keywords: Three-dimensional bin packing, multi-criteria optimization problem, non-dominated solu-
tions, space compaction.

1. Introduction
The Three-dimensional Bin–Packing Problem( 3BPP) [3] is an extension of the Bin–Packing Problem for
packing solid objects into three–dimensional bins. Packing problems have various real-world applications
in areas like container loading, storing goods, and cutting objects out of a piece of material. These
problems are usually NP-hard, thus the research for solvability is focused on the design of polynomial
time approximation algorithms and schemes. The problem here addressed arises frequently when in need
to store goods in warehouses and can be informally described as: given a set of different bins and a set of
diverse boxes, find a packing of the boxes into the smallest number of bins minimizing space occupation.
This is a variant for NP-hard three-dimensional bin packing problem (3BPP). We call this problem the
3BPP–min. Hereinafter we only consider offline problems.

During the last decade, several papers on the general subject of orthogonal 3D-BPP have been pub-
lished. The most cited one is probably the reference [3] by Martello, Pisinger, and Vigo. The lower bounds
there derived have been used since throughout the related literature. The authors also present a stripping
two-phase heuristic, H1, here called MPV , for approximating the solution of the tree-dimensional bin
packing problem. Each container is divided into several shelves and, for each shelf, a two-dimensional bin
packing problem is solved. When all the boxes are placed into the shelves, a one-dimensional problem
is solved, searching for the best combination of shelves for each container. The time needed for MPV
to obtain a solution can exceed one hour for instances having no more than 90 boxes. Another heuristic
algorithm is also presented, H2, using the concept of three dimensional corner points that allow for the
definition of the envelop of the region with the already packed items. In fact, the most common ap-
proach to the general 3BPP problem is the so called Slicing (or Strip) strategy for the resolution of the
Three-dimensional Packing Problem. It consists in repeatedly solve 2-D packing problems by defining
horizontal slices on the height of a bin.

Next section describes some basic concepts related to the problem and presents a new heuristic using
the strip approach for the 3BPP–min together with the concept of non-dominated solution. Section 3)
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describes some numerical experiments using several instantiations for the problem and the correspondent
results analysis. We finish with a section where conclusions are drawn and directions for future work are
laid.

2. SRC – A new algorithm for approximating the 3DPP–min
Consider the Euclidean space R3 with the XYZ coordinate system to represent a packing. The down-
back-left vertex of a bin represents the origin. Each rectangular box Ri is given with an initial orientation
related to the coordinate axes and has its dimensions denoted as (wi, hi, di) representing the weight, height
and depth, respectively. The input of a general 3BPP problem consists of a list L = {R1, R2, . . . , Rn}
of 3-dimensional rectangular boxes and a list of 3-dimensional rectangular bins B = {B1, B2, . . . , Bm},
where box dimensions must be smaller than the maximum of the dimensions of the bins. We assume that
there are enough bins to pack all the boxes.

All the boxes of the list L are to be packed into bins without overlap. The edges of both packed boxes
and bins must always remain parallel to the coordinate axes. When rotations are allowed, the boxes to be
placed may be rotated around any of the axes by 90o. However, under this context, rotations around the Z
axis provide the same general orientation and are therefore redundant for this study. Allowing rotations
greatly increases the difficulty of finding a good solution since the search space expands significantly
comparing to the 3D-BPP where the boxes have fixed orientations.

This section presents a new heuristic algorithm for the 3BPP–min with rotations that we call SRC –
Strip Rotation and Compaction. The new approach is based on the ideas found in [3], namely the MPV
heuristic algorithm, and the non-dominated rectangle compaction approach in [1]. Box rotations are only
allowed for two of the dimensions: around the Y axis and around the X axis. The basic structure of
MPV is used, i.e., the problem is solved by a first phase where 2D-Packing problems defining strips are
solved. When all the boxes are placed and the several strips defined (which can be looked at as virtual
shelves inside the bin) a one-dimensional packing problem is solved searching for the best combination of
shelves for each container. The major innovation is the way the boxes are placed (packed) in each shelf.
For each one, we solve the two-dimensional bin packing strip problem assuming that all the boxes must
be placed and no ordering has yet been defined between the boxes themselves (e.g. by order of volume).

a b

r1 c

r2 d

r3

Figure 1: Binary tree for packing 4 boxes into a shelf (strip) (ri represents the ith sub-root).

We will represent the sequence of boxes already chosen for placement (packing) by a binary tree
structure (Fig. 1). This means that it will always be a degenerate tree: the right child of any internal
node is always a leaf, representing a single box, while the root (and each sub-root) represents a packing
(sequence of one or more boxes). Associated with each leaf is a list of dimensions representing the two
possible ways to pack a pair of rectangle: using a horizontal or a vertical orientation. For single boxes
(leaf nodes), assume that a horizontal box orientation fixes the smallest of the box’s dimensions for the
Y axis coordinate and assume a vertical orientation otherwise.

It is now important to realise that we order the list of the rectangles’ dimensions satisfying (strictly)
decreasing order of heights, hi > hi+1, and (strictly) increasing order of widths, wi < wi+1, where i
represents the ith element in this list as described in (Fig. 2). We will next see that this ordering is
crucial for the heuristic method next described.

A sequence of already relatively placed boxes can be considered, in itself, a virtual box whose lateral
(list of) dimensions are the ones of the placement’s bounding rectangle or envelop. Then any two boxes
(virtual or not) can be placed next to each other under two possible orientations: one on the right of
the other (meaning that this placement can be divided by a vertical slice) or on top of each other (we
have a horizontal slice dividing the placement). Thus we only consider slicing placements for the packing
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(5, 20, 30)

[5, 20, vertical] [20, 5, horizontal]

(20, 10, 30)

[10, 20, vertical] [20, 10, horizontal]

(10, 10, 30)

[10, 10, horizontal]

Figure 2: The associated lists of boxes with dimensions: (a) (5, 20, 30), (b) (20, 10, 30) and (c) (10, 10, 30).
The latter is squared having only one possible orientation.

of any two boxes (recurrently, for placing a box into an already decided arrangement of boxes). The
list associated with a node represents all the possible placements (arrangements) for all the possible
orientations between both boxes.

The packing is obtained using a procedure where the goal in each iteration is to place a box into
a previous packing, which was obtained through a slicing sequence of box’s placements. At first, a list
with all the possible combinations deriving from the use of a vertical cut is created. Next the solutions
obtained assuming the existence of a horizontal cut are inserted into the list. Each new possible solution
(the dimensions for the enveloping rectangle and the associated cutting direction) is joined into the
already existing solutions list obeying the order

hi > hi+1 ∧ wi < wi+1 , 1 ≤ i ≤ s , (1)

where s is the number of elements in the list. Furthermore, any new solution is only added to the list if
and only if it is a non-dominated solution, that is, there is no solution that is strictly better than it on
both dimensions∗. A solution (a, b) is considered dominated by (c, d) if they are equal in each coordinate
or if (c ≤ a ∧ d < b)∨ (c < a ∧ d ≤ b). As an example, if we were to place the boxes (a) and (c) from Fig.
2 next to each other, the node representing all the possible and non-dominated placement combinations
would present, as associated list of feasible solutions, the four possibilities shown in Figure 3.

(a)

[5, 20, v] [20, 5, h]

(c) [10, 10, v]

[10, 30, h] [15, 20, v] [20, 15, h] [30, 10, v]

Figure 3: New tree node aggregating two leaf-nodes (representing boxes (a) and (c)) of Fig. 2.

Given two nodes and their associated lists of dimensions, an algorithm for constructing the list of
possible placement solutions when joining the box in the right node with the box (or enveloping boxes
rectangle) represented by the left node can be described as:

SRC Packing Procedure

- Starting from the head of the list and while both lists associated with the children nodes have
elements:

1. Assuming a vertical slice, join the new box to the right of this placement solution adding both
widths and using the maximum hight as new rectangular dimensions;

2. Insert the new solution into the list of this root node solutions obeying the order previously
defined;

3. If the width of the element from the list of the left child was the greatest then advance for the
next element in this list;

∗In the sense of Pareto optimality.
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4. Else if the width of the element from the list of the right child was the greatest then advance
for the next element in this list

5. Otherwise advance in both lists.

- Repeat the steps above starting from the end of the list and replacing vertical by horizontal and
width by hight.

The insertion of a recently build rectangular solution first tests this solution with respect to the all
possibilities already in the list of solutions, to find out if this one is a non-dominated solution. In the
latter case the new solution it is inserted in the list in order. Otherwise, this solution being dominated
is not inserted. The test is made using the defined ordering which simplifies the number of tests to be
performed (for more details please refer to [1]).

Other important step in the algorithm is that, whenever a solution presents one of the dimensions equal
to the respective bin’s width or height but there is still space on the opposite direction to accommodate
one more box, the associated rectangle suffers a 90o rotation so that the remaining box can still be placed.

The process above described is repeated until there are no boxes to be placed or the bin shelf comports
no more of the remaining boxes. The best packing will be the solution from the list at the root of the
final tree that presents the greater compaction rate. At the end of this procedure, a sub-set of the boxes
are packed at a shelf. The remaining ones, that were rejected during the search for a feasible solution or
could no more be accommodated into the present bin’s shelf, return to the list of boxes and the placement
and search for another feasible solution using a new shelf are repeated. If the bin is full, a new bin is
chosen. These procedures are repeated until all the boxes are packed into feasible shelfs, this is, until we
find a feasible solution for the overall packing. In the limit, there may be shelves/bins having only one
placed box.

3. Numerical Results
To perform the computational experiments to assert the validity of this new approximation algorithm
tests were run using an Intel(R) Core(TM)2 Quad CPU at 2.83GHz with 4GB RAM.

Different types of items, i.e, items with different dimensions were considered (Table 1). Classes 1 to
5 and 7 to 9 are the ones already used in the related literature, namely in [3]. Class 6 consists of boxes
having randomly generated dimensions in [1, 50]. While the bins used for classes 1 to 6 were always
cubic bins of side 50, for the types found in 7, 8 and 9 the bins have dimensions W = H = D = 10,
W = H = D = 40 e W = H = D = 100, respectively.

Table 1: The several types of boxes in each instance class.
Dimensions 1 2 3 4 5 6 7 8 9

wj

[
1, 1

2W
] [

2
3W,W

] [
2
3W,W

] [
1
2W,W

] [
1, 1

2W
]

[1,W ] [1, 10] [1, 35] [1, 100]

hj

[
2
3H,H

] [
1, 1

2H
] [

2
3H,H

] [
1
2H,H

] [
1, 1

2H
]

[1, H] [1, 10] [1, 35] [1, 100]

dj

[
2
3D,D

] [
2
3D,D

] [
1
2D,D

] [
1
2D,D

] [
1, 1

2D
]

[1, D] [1, 10] [1, 35] [1, 100]

The new heuristic algorithm, SRC, was compared with heuristic H1 from [3] already referred to in
the introductory section and here denominated MPV . In [2] Boschetti presents new lower bounds for the
3BPP showing that these dominate the ones in [3]. The author also provides an extension for packings
allowing for 90o box rotations. Thus we used Boschetti results for the evaluation of the expected minimum
number of bins for each test instance.

This section reports the running times needed to terminate the heuristics and the number of bins
occupied in the solutions found. These values are averages of 30 instances runs in each class. Both
heuristics were tested using different quantities of each type of boxes to pack. The number of items to
be placed ranged from 10 to 90 and from 100 to 500. Notice that the boxes instances’ of the first three
classes (1,2, and 3) are very similar, always having two of their dimensions very large when compared to
the remaining one.

Table 2 presents the average number of bins allocated to the packing solutions. Observe that for
N = 10 both algorithms achieved the lower bound or only used one more bin (type 6). Nevertheless, in

4



general, SRC presents better compaction ratios then those obtained by MPV packings since it occupies
less bins for the same instances. Note also that, for types 1 and 2, the results are very similar: MPV
occupies the same bins while SRC uses less bins although not exactly the same number. This is due to
the fact that these boxes are shaped very similarly, having wj ∈

[
1, 1

2W
]
,
[
2
3W,W

]
and hj ∈

[
1, 1

2H
]
,[

2
3H,H

]
, respectively. Taking in consideration the fact that the new procedure performs 90o rotations

this effect was expected. For class 3 it is noticeable that the values are the same for both heuristics.
Moreover, both always achieved the LB values. Since the new heuristic only performs rotations over 2 of
the dimensions - width and hight and this type of boxes have dimensions that are bigger than half of the
bin’s respective dimension, the possibility of increasing the overall compaction rate by rotation is here
redundant. For class 4, notice that the new heuristic obtains only slightly better results that MPV . The
boxes are instantiated having all the three dimensions bigger than half on the bin’s dimension. Again,
whichever gain is obtained by the rotations, it is not very noticeable due to the huge dimensions of the
boxes involved when compared with the bins’ dimensions. Thus the algorithm SRC consistently presents
better results than the MPV heuristic in the sense that it obtains more compact solutions when the
boxes are relatively smaller than the bins where they are to be packed on.

Table 2: Table with the average number of allocated bins for packing each of the 30 instances (LB –
Lower bound).

Number of allocated bins
N Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9

10
LB 3 3 3 10 1 2 2 2 3

MPV 3 3 3 10 1 3 3 2 3
SRC 3 3 3 10 1 3 3 2 3

50
LB 11 11 13 47 1 8 8 5 8

MPV 13 13 13 48 3 11 10 8 11
SRC 13 12 13 48 2 10 9 7 10

100
LB 21 21 25 94 2 15 14 10 15

MPV 25 25 25 95 4 20 18 15 20
SRC 24 24 25 94 3 18 17 13 19

150
LB 31 31 38 142 3 22 21 14 22

MPV 38 38 38 142 6 28 26 20 28
SRC 36 36 38 142 4 27 24 18 27

200
LB 42 42 50 188 4 29 27 19 29

MPV 50 50 50 189 7 36 33 26 36
SRC 48 48 50 189 5 35 32 24 35

250
LB 52 52 63 235 4 36 33 23 35

MPV 63 63 63 236 8 44 41 31 44
SRC 59 59 63 235 7 43 38 29 43

300
LB 62 62 75 282 5 43 40 27 42

MPV 75 75 75 283 9 52 48 36 52
SRC 70 70 75 283 8 51 45 34 51

350
LB 73 73 88 330 6 49 46 31 49

MPV 88 88 88 330 10 60 55 42 60
SRC 81 82 88 330 9 58 52 39 59

400
LB 83 83 100 377 7 55 52 36 55

MPV 100 100 100 378 11 67 62 47 68
SRC 92 93 100 377 10 65 59 44 66

450
LB 94 94 113 424 8 62 59 40 61

MPV 113 113 113 425 12 75 69 52 75
SRC 104 104 113 424 11 73 66 49 74

500
LB 104 104 125 471 8 68 65 44 68

MPV 125 125 125 472 13 82 76 57 83
SRC 116 115 125 472 12 81 73 54 82

Figure 4 shows the average running times for both heuristics where the red line represents SRC and
the blue line MPV values. The X axis represents the number of items to be packed for each of the 30
instances group. The instances generated for classes 1 and 2 have very similar results for both algorithms
so type 1 results were chosen to illustrate the algorithmic performance. The same happens for the results
in classes 7, 8 and 9 and therefore only type 8 results are here included. It is obvious that, in virtually
all situations, the new algorithm is faster than the MPV , except for type 3 boxes. In this case, the
relation between boxes and the bins dimensions allows to place only a box per shelf. Since SRC has an
extra procedure to solve the one dimensional packing of the shelves, it ends up doing extra work when
compared to MPV. For class 4, the items to be placed are big and only for the bigger numbers of boxes
(from 200 up) do we see SRC faster then MPV. Overall, it is obvious that SRC is much faster than MPV
and the plots in Fig. 4 seem to indicate that asymptotically, SRC is much more efficient than MPV, with
the only exception of class 3 instances.
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Figure 4: Average running times for 30 instances (seconds).

4. Conclusions
This work presents a new heuristic approach to solve a three dimensional bin packing problem allowing
for 90o rotations, 3BPP–min. The method is based on a stripping approache for the three dimensional bin
packing problem and from the concepts presented by Almeida etal. for the compaction of two dimensional
packings allowing for item rotations.

A new approximation algorithm, SRC, is presented and the comparison of its results with the ones
obtained with the benchmarking heuristic MPV from Martello etal. are positively favorable towards the
new heuristic. This is true either in terms of achieved compaction rations as for performance times.

The experiment and conclusions encouraged us into further explore and extend this method. The
more so if, as we expect, if the study of the theoretical complexity bounds for the SRC approximation
algorithm shows that it is polynomially bounded.
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