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Abstract  
In this work is presented a genetic algorithm for the Job Shop Scheduling Problem (JSSP). The genetic algorithm 
is based in random keys chromosome that is very easy to implement and allows using conventional genetic 
operators for combinatorial optimization problems. 
JSSP is a classic combinatorial optimization problem and is also a NP-hard problem. In the JSSP each job is 
formed by a set of operations that has to be processed in a set of machines. Each job has a technological definition 
that determines a specific order to process the job’s operations, and it is also necessary to guarantee that there is no 
overlap, in time, in the processing of operations in the same machine; and that there is no overlap, in time, in the 
processing of operations of the same job. The objective of the JSSP is to conclude the processing of all jobs as soon 
as possible, this is, to minimize the makespan. The JSSP represents several real situations of planning and for that 
it is a very important problem. Recently, the load operations in a warehouse were modeled by a JSSP with 
recirculation. 
The use of exact algorithms for the Job Shop is still limited to instances of small size. The alternative to solve the 
Real-World Job Shop Scheduling Problem is the use of heuristic procedures. Genetic Algorithms is a well known 
heuristic technique and largely used on the engineering field of solving optimization problems. This genetic 
algorithm includes specific knowledge of the problem to improve its efficiency. It is used a constructive algorithm 
based in Giffler-Thompson's algorithm to generate active plans. The constructive algorithm reads the chromosome 
and decides which operation is scheduled next. The first population generation is based on the instances 
parameters. This option increases the effectiveness of the genetic algorithm. 
The genetic algorithm is tested by using some benchmark problems and is presented computational results. 
Keywords: Metaheuristics, Job Shop Scheduling, Genetic Algorithm; Random keys. 
 
1. Introduction 
Some Combinatorial Optimization Problems are very hard to solve and therefore require using heuristic 
procedures. One of them is the Job Shop Scheduling Problem (JSSP). The use of exact methods to solve the JSSP 
is limited to the instances of small size. According to Zhang et al. [1] the Branch and Bound methods do not solve 
instances larger than 250 operations in a reasonable time. As stated in Liu et al. [2] in practical manufacturing 
environments the scale of job shop scheduling problems could be much larger. They exemplify that in some big 
textile factories, where the number of jobs may be up to 1,000. 
The heuristic methods have become very popular and have gained much success in solving job shop scheduling 
problems. In the last twenty years a huge quantity of papers was published presenting several metaheuristic 
methods. From Simulated Annealing [3] to Particle Swarm Optimization [4], there are several variants of the same 
method class. Very popular between the researchers is the Evolutionary Algorithms [5,6,7,8,9,10,11,12,13]. In 
1996, Vaessens et al. [14] stated a goal for the Job Shop Problem: to achieve an average error of less than two 
percent within 1,000 seconds total computation time. In this work the authors presented the Genetic Algorithms as 
the less effective metaheuristic to solve the JSSP. A possibility to increase the efficiency and the effectiveness is an 
algorithm that includes specific knowledge of the problem. Several works include some specific local search for 
the JSSP that is based in the critical path on a disjunctive graph to model the JSSP. For a long period, the Nowicki 
and Smutnicki’s tabu search method [15] was seen as the most effective and efficient method for JSSP. In 2005, 
the authors presented a new version of a tabu search for the JSSP. 
Presented in this work is a new idea for improving the effectiveness and efficiency in an Evolutionary Algorithm to 
solve the JSSP. Since a difficulty with the JSSP is the change from instance to instance, a procedure is 
implemented to take knowledge from the instance and transfer it to the Population Generation parameters. 
The paper is organized as follows. An introductory section defines the JSSP problem and its representation with 
the use of a disjunctive graph, in terms of solutions sets. A central section describes the methodology. An 
experimental section describes the performance of our algorithm and the most interesting results are explained. 
Some conclusions and a discussion on future work end the paper. 
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2. The Job Shop Scheduling Problem 
The JSSP represents several real situations of planning and for that reason it is a very important problem. The JSSP 
is an important practical problem in the fields of production management and manufacturing engineering. The 
applications of JSSP can be found in production planning, project resource management, distributed or parallel 
computing, and many other related fields. According to Lin et al. [17], a large number of small to medium 
companies still operate as job shops. 
Throughout the years in the vast bibliography of the JSSP, variations were being presented to the classic model 
that allowed studying specific real cases. For instance, Kimbrel and Sviridrenko [18] present the particular 
high-multiplicity JSSP that arises in the integrated circuit fabrication. Also, Oliveira [13] modeled the load 
operations in a warehouse by a JSSP with recirculation. As Yang et al. [19] say, the JSSP is a hard combinatorial 
optimization problem and computationally challenging. As they pointed out, “efficient methods for arranging 
production and scheduling are very important for increasing production efficiency, reducing cost and improving 
product quality”. 
In the Job Shop Scheduling Problem (JSSP) each job is formed by a set of operations that has to be processed in a 
set of machines. Each job has a technological definition that determines a specific order to process the job’s 
operations, and it is also necessary to guarantee that there is no overlap, in time, in the processing of operations in 
the same machine; and that there is no overlap, in time, in the processing of operations of the same job. The 
objective of the JSSP is to conclude the processing of all jobs as soon as possible, that is, to minimize the 
makespan. 
The classical JSSP model considers a set of n jobs, and a set of m machines. Each job consists of a set of m 
operations (one operation on each machine), among which precedence relations exist that define a single order of 
processing. Each operation is processed in one machine only, during p units of time. The instant when the job is 
concluded is C. All operations are concluded at Cmax (called makespan). 
For the convenience of the representation, operations are numbered consecutively from 1 to N n m= × , in which 
N is the total number of operations. The classic model considers that all the jobs are processed once in every 
machine, and the total number of operations is n m× . In a more general model, a job can have a number of 
operations different from m (number of machines). The case in which a job is processed more than once in the 
same machine, is called a job shop model with recirculation [12]. Scheduling problems occur wherever a number 
of tasks have to be performed with limited resources. 
The computational and practical significance of the JSSP have motivated the attention of researchers for the last 
several decades. Yang et al. [19] enumerate the existing approaches for the JSSP that include exact methods such 
as branch-and-bound and dynamic programming, approximate and heuristic methods such as dispatching priority 
rules, shifting bottleneck approach, and Lagrangian relaxation. The authors associate the development of artificial 
intelligence techniques with the rise in many metaheuristic methods that have been applied to the JSSP, such as 
simulated annealing, tabu search, genetic algorithm, ant colony optimization, particle swarm optimization, and 
artificial immune system. 
Over the years a lot of research has been made into this problem, particularly with genetic algorithms. An 
important issue in the genetic algorithms is the efficiency. This paper presents the inclusion of a “new” initial 
population that a generation procedure takes into account at the instance of the problem. The aim of this procedure 
is to improve the efficiency and the effectiveness of the genetic algorithm. 
The JSSP is modeled mathematically. Blazewicz et al. [20] refer to the development of different formulations for 
this problem. The first one arises in 1959. One of the most used was presented by Adams et al. in 1988, and is 
based in the disjunctive graph. We address details of this formulation [20]. 
Roy and Sussman [21] modulated the JSSP using a graph, ( ),G V C D= ∪ , which they designated as a disjunctive 
graph. The set of nodes is formed by all N operations and by a start node s and an end node e. The set of arcs is 
formed by two subsets. The conjunctive arcs set C, and the disjunctive arcs set D. Figure 1 presents the disjunctive 
graph of an example with four jobs and four machines. Each job is represented by a row of nodes. In each node is 
represented the operation’s index and the machine where the operations are processed. The nodes (operations) of 
the same job are connected by a conjunctive arc, and represent the precedence relations that exist between them. 
For each pair of operations that are processed in the same machine (belonging to a different job) there exits one 
disjunctive arc. This arc is a non-oriented arc, and is represented by a hatch line. If an operation i is performed 
before operation j, the arc is oriented form i to j. All operations that are processed in the same machine form a 
sub-graph clique of disjunctive arcs. 
The sequencing based on the disjunctive graph consists (for all machines) in the definition of a processing order 
between all operations that are processed by that same machine. A schedule is valid if the resulting oriented graph 
is acyclic. The longest path length is also designated by a critical path of the acyclic graph and is equal to the value 
of maxC . 
A lot of research has been focused on obtaining and improving solutions for the JSSP. For a review and 
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comparison, we refer the reader to Blazewicz et al. [20], Cheng et al. [26], Jain and Meeran [22], and to Vaessens 
et al. [14]. 

 

J1 1 1 2 2 3 3 4 4

J2 5 3 6 1 7 4 8 2

s - e -
- - - -

J3 9 2 10 4 11 1 12 3

i m
J4 13 1 14 3 15 4 16 2

 
 

Figure 1: Disjunctive graph 
 

The solutions (schedules) for the JSSP can be classified in 3 sets: semi-actives, actives, non-delayed. These 
solutions obey relations of inclusion that are illustrated in the Venn diagram that is shown in Figure2. In relation to 
the optimal solution of the problem (minimization of maxC ), it is known that it is an active schedule but not 
necessarily a non-delayed schedule. 
 

 

SA

A
ND

SA - Semi Active
A - Active
ND - Non Delay
* - optimum

*

 
 

Figure 2: Type of schedules 
 

The JSSP solution consists of obtaining an orientation of the disjunctive arcs in such a way that we can achieve the 
minimum critical path. A critical block of operations is defined as a set with the maximum successive operations 
that belong to the critical path and that are processed in that same machine. In the literature there are some 
neighbourhood schemes introduced based on the reorientation of some disjunctive arcs of the critical path. Among 
the already existing ones we emphasize the scheme proposed by Nowicki and Smutnicki [15], because it is simple 
and limits the exchanges to the operations of extremities of the blocks. For additional explanations on the 
neighbourhood schemes based on blocks, we refer the reader to Jain et al. [23]. 
 
3. Methodology 
In this work we adopted a method based on genetic algorithms. This technique’s simplicity to model more 
complex problems and its easy integration with other optimization methods were factors that were considered for 
its choice. The algorithm proposed was conceived to solve the classical JSSP, but it is possible to use the same 
method to solve other variants of the JSSP. 
One of the features that differentiates conventional genetic algorithms is the fact that the algorithm does not deal 
directly with the problem’s solutions, but with a solution representation, the chromosome. The algorithm 
manipulations are done over the representation and not directly over the solution [24]. 
Traditionally, genetic algorithms used bit string chromosomes. These chromosomes consisted of only '0s' and '1s'. 
Modern genetic algorithms more often use problem-specific chromosomes, as the balance between flexibility and 
raw efficiency tends away from the latter, and with evidence that use of real-valued chromosomes often 
outperformed bit string chromosomes anyway. Another alternative is the Gray code that is a binary numeral 
system where two successive values differ in only one digit [24]. 
The permutation code was adequate to permutation problems. In this kind of representation, the chromosome is a 
literal of the operations sequence on the machines. In the classical JSSP case, the chromosome is composed by m 
sub-chromosomes, one for each machine, each one composed by n genes, one for each operation [13]. The i gene 
of the sub-chromosome corresponds to the operation processed in i place in the corresponding machine. The allele 
identifies the operation’s index in the disjunctive graph [13]. 
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Nevertheless, in this work, the random key code presented by Bean [25] is used. As Gonçalves et al. state, the 
important feature of random keys is that all offspring formed by crossover are feasible solutions, when it is used as 
a constructive procedure based on the available operations to schedule and the priority is given by the random key 
allele. Through the dynamics of the genetic algorithm, the system learns the relationship between random key 
vectors and solutions with good objective function values. Another advantage of the random key representation is 
the possibility of using the conventional genetic operators. This characteristic allows the use of the genetic 
algorithm with other optimization problems, adapting only a few routines related with the problem. 
A chromosome represents a solution to the problem and is encoded as a vector of random keys (random numbers). 
In this work, according to Cheng et al. [26], the problem representation is indeed a mix from priority rule-based 
representation and random keys representation. 
The solutions are decoded by an algorithm, which is based on Giffler and Thompson’s algorithm [27]. While the 
Giffler and Thompson’s algorithm can generate all the active plans, the constructor algorithm only generates the 
plan in agreement with the chromosome. As advantages of this strategy, we have pointed out minor dimension of 
solution space, which includes the optimum solution and the fact that it does not produce impossible or 
disinteresting solutions from the optimization point of view. On the other hand, since the dimensions between the 
representation space and the solution space are very different, this option can represent a problem because two 
chromosomes can represent the same solution. 
The constructive algorithm has N stages and in each stage an operation is scheduled. To assist the algorithm’s 
presentation, consider the following notation existing in stage t: 

tP  -  the partial schedule of the ( )1t −  scheduled operations; 

tS  -  the set of operations schedulable at stage t , i.e. all the operations that must precede those in tS  are in tP ; 

kσ  -  the earliest time that operation ko  in tS  could be started; 

kφ  -  the earliest time that operation ko  in tS  could be finished, that is k k kpφ σ= + ; 
M ∗  -  the selected machine where { }min

k ko S kφ φ∗
∈= ; 

tS ∗  -  the conflict set formed by j to S∈  as processed in M ∗  and jσ φ∗< . 

jo∗  -  the selected operation to be scheduled at stage t  
The constructor algorithm of solutions is presented in a format, similar to the one used by Cheng et al. [26] to 
present the Giffler and Thompson algorithm [27]. 

 
Algorithm 1: Constructive algorithm 

 
Step 1 Let 1t =  with 1P  being null. 1S  will be the set of all operations with no 

predecessors; in other words those that are first in their job. 
Step 2 Find { }min

k to S kφ φ∗
∈=  and identify M ∗ . If there is a choice for M ∗ , choose 

arbitrarily. Form tS∗ . 
Step 3 Select operation jo∗  in tS∗ , with the greatest allele value. 

Otherwise, go to Step 4. 
Step 4 Move to next stage by 

 (1) adding jo∗  to tP , so creating 1tP+ ; 
 (2) deleting jo∗  from tS  and creating 1tS +  by adding to tS  the operation 

that directly follows jo∗  in its job (unless jo  completes its job); 
 (3) incrementing t  by 1. 

Step 5 If there are any operations left unscheduled ( )t N< , go to Step 2. Otherwise, 
stop. 

  
 

In Step 3 instead of use a priority dispatching rule, the information given by the chromosome is used. If the 
maximum allele value is equal for two or more operations, one is chosen randomly. 
 
3.1. First generation 
In the JSSP problem it is possible to calculate for each operation the remaining time for completion of the job. In 
the disjunctive graph this time is referred to as “tail”. This value represents the path length from the operation and 
node e. It is easy to admit that the operations with large tail must be sequenced first because they could define the 
makespan. Indeed, there exists the dispatching rule that is used in practice and sequence operations in first place 
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that belongs to the job with Most Work Remaining (MWR). 
Consider the following example presented in Table 1, with four jobs (J1, J2, J3, J4) and four machines (m1, m2, 
m3, m4). In this instance there are sixteen operations. Table 1 presents this instance. The operations are numbered 
sequentially and represented by index i. The first four operations belong to the job J1. The processing time of each 
operation is given in the row p. Row m identifies the machine where the operations must be performed. The tail 
row shows the remaining time to complete the job after the processing of the operation. For instance, the tail of 
operation 1 is 67 and is equal to the processing time of operations 2, 3 and, 4, and that is respectively 30, 16, and 
21. 

 
Table 1: Example of a JSSP 4x4 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p 16 30 16 21 16 15 3 6 3 3 11 4 10 13 22 14
m 1 2 3 4 3 1 4 2 2 4 1 3 1 3 4 2
tail 67 37 21 0 24 9 6 0 18 15 4 0 49 36 14 0

J1 J2 J3 J4

 
 

Figure 3 presents a partial disjunctive graph of the example above. In each node the index of operation i, the 
machine m, the processing time p, and the tail are represented. For convenience, Figure 3 presents only the 
disjunctive arcs set of machine 1. 

 
J1 1 1 2 2 3 3 4 4

16 67 30 37 16 21 21 0

J2 5 3 6 1 7 4 8 2
16 24 15 9 3 6 6 0

s - e -
- - - -

J3 9 2 10 4 11 1 12 3
3 18 3 15 11 4 4 0

i m
J4 13 1 14 3 15 4 16 2 p tail

10 49 13 36 22 14 14 0
 

 
Figure 3: Partial disjunctive graph of example of Table 1. 

 
Applying the MWR rule to this instance the schedule is given in Figure 4. For this small example, this MWR 
solution is the optimal solution. 
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Figure 4: Gantt chart of MWR solution. 
 

In the chosen random key representation, a chromosome is a vector of N genes that are real numbers between 0 and 
1. The representation has one gene for each operation. Table 2 presents two chromosomes for a JSSP of four jobs 
and four machines. The second chromosome (chrms2) was generated randomly, while the first chromosome 
(chrms1) represents the information that is obtained dividing in the example above the tail value per maximum tail 
value (67 in the example). Applying the constructive algorithm and considering the chromosome chrms1, the 
solution of Figure 4 is obtained. Attending to this property we implement a procedure to generate the first 
population that includes some knowledge about the instance in the form of the tail of each operation. 
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Table 2: Chromosomes for a JSSP 4x4 
 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
chrms1 1,00 0,55 0,31 0,00 0,36 0,13 0,09 0,00 0,27 0,22 0,06 0,00 0,73 0,54 0,21 0,00

chrms2 0,04 0,84 0,62 0,16 0,46 0,15 0,47 0,13 0,39 0,60 0,33 0,97 0,23 0,04 0,66 0,33

J1 J2 J3 J4

 
 

To generate L individuals in a population the following expression at Eq.(1) is used to generate the allele value for 
each gene j: 

 
( );

, 0, , 1 , 1, ,
max( )

j j
j

j

randbetween tail tail i GAP
allele i L j N

tail i GAP

+ ×
= = − =

+ ×
… …   (1) 

 
3.2. Considerations about GAP 
The GAP value allows obtaining at the end of population a quite random chromosome. The higher the GAP, the 
more random is the population. Lower GAP gives a population close to the MWR dispatch rule. 
For a population of 50 individuals, the graphic presented in Figure 5 presents some statistics of the allele values for 
each gene (16 operations / genes). The average value, maximum value, minimum value and also the tail value of 
each operation is presented. 
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Figure 5: Statistics of allele’s values. 
 

Figure 6 shows the GAP effect in the statistics of the allele values for the 16 operations. Figure 6 a) shows the 
statistics when a small GAP is used. The values are very close to the tail of each operation. Figure 6 b) shows the 
statistics for a high GAP. The range of variation for the alleles is very similar for all genes, so the population is 
“more random”. 
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b) 

 
Figure 6: The GAP effect on statistics of the 16 genes. 
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Figure 7 presents the alleles’ values of four genes when using a GAP=5. These genes belong to the same machine 
because they represent the priority of operation 1, 6, 11, and 13. The tails of the operations are respectively 67, 9, 4, 
and 49. It is possible to verify that for the first chromosomes the alleles’ values translate the priority give by the tail 
of each operation. It is also possible to verify that the last individuals have quite random alleles. It is possible to see 
that in some individuals the operation 13 (Gene13) and operation 6 (Gene6) have a priority greater than the 
operation 1 (Gene1). This situation allows a first sequence of these operations before operation 1, which is the 
operation with the greatest tail. 
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Figure 7: The allele generation. 
 

Figure 8 shows the effect of GAP on the allele generation for the genes of machine 1. Figure 8 a) shows the alleles 
values when used as small GAP. The values are very close to the tail of each operation. Figure 8 b) shows the 
statistics for a high GAP. The range of variation for the alleles is very similar for all genes, so these allow “any” 
sequence to schedule these four operations in machine 1. 
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b) 

 
Figure 8: The effect of GAP on allele generation. 

 
3.2. The algorithm structure 
The genetic algorithm has a very simple structure and can be represented in the Algorithm 2. It begins with 
population generation and her evaluation. Attending to the fitness of the chromosomes the individuals are selected 
to be parents. The crossover is applied and it generates a new temporary population that also is evaluated. 
Comparing the fitness of the new elements and of their progenitors the former population is updated. 
The Uniform Crossover (UX) is used this work. This genetic operator uses a new sequence of random numbers and 
swaps both progenitors' alleles if the random key is greater than a prefixed value. Table 3 illustrates the UX's 
application on two parents (prnt1, prnt2), and swaps alleles if the random key is greater or equal than 0.75. The 
genes 3, 4 and 16 are changed and it originates two descendants (dscndt1, dscndt2). Descendant 1 is similar to 



 
 

8 

parent 1, because it has about 75% of genes of this parent. 
 

Algorithm 2: Genetic algorithm 
 

begin  
P ← GenerateInitialPopulation()  
Evaluate(P)  
while termination conditions not meet do  
 P’ ← Recombine(P)   //UX 
 Evaluate(P’) 
 P ← Select(P ∪P’) 
end while  

  
 

Table 3: The UX crossover 
 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
prnt1 0,89 0,49 0,24 0,03 0,41 0,11 0,24 0,12 0,33 0,30 0,27 0,24 0,80 0,53 0,28 0,18

prnt2 0,83 0,41 0,40 0,04 0,29 0,35 0,38 0,01 0,42 0,32 0,28 0,28 0,72 0,61 0,44 0,13

randkey 0,64 0,72 0,75 0,83 0,26 0,56 0,28 0,31 0,09 0,11 0,37 0,25 0,23 0,05 0,40 0,76

dscndt1 0,89 0,49 0,40 0,04 0,41 0,11 0,24 0,12 0,33 0,30 0,27 0,24 0,80 0,53 0,28 0,13

dscndt2 0,83 0,41 0,24 0,03 0,29 0,35 0,38 0,01 0,42 0,32 0,28 0,28 0,72 0,61 0,44 0,18

J1 J2 J3 J4

 
 

 
4. Computational experiments 
Beasley [28] developed an OR-Library and it is a collection of test data sets for a variety of Operations Research 
(OR) problems. The benchmark problems are taken from this OR-Library. Several researchers have addressed the 
importance of solving Job Shop Scheduling Problems, which will help in solving real world problems in industries 
and in scheduling their jobs perfectly. 

 
Table 4: Computational results 

 

Instance 1 10 50 100 500 1000 2000 3000 4000 5000 1 10 50 100 500 1000 2000 3000 4000 5000
la21-tail 1300,3 1263,5 1229,2 1211,3 1173,5 1164,0 1141,3 1135,6 1133,6 1132,0 1279 1238 1206 1176 1153 1141 1118 1118 1118 1118
la21-rand 1319,3 1274,5 1241,3 1227,7 1190,5 1182,2 1168,3 1161,8 1149,4 1144,0 1288 1240 1208 1208 1176 1168 1140 1158 1118 1118
la02-tail 761,0 699,0 697,0 677,0 672,0 665,0 665,0 662,0 662,0 662,0 761 699 697 677 672 665 665 662 662 662
la02-rand 774,0 726,0 708,0 676,0 665,0 665,0 665,0 665,0 665,0 665,0 774 726 708 676 665 665 665 665 665 665
la19-tail 957,7 934,8 907,2 905,5 882,0 874,0 865,0 860,0 856,8 854,8 909 909 892 892 872 868 848 848 848 848
la19-rand 971,3 940,0 915,8 901,0 884,2 875,7 866,3 859,7 858,3 856,8 956 917 901 885 876 867 857 857 852 850
la24-tail 1184,0 1129,8 1103,0 1091,5 1061,2 1055,7 1033,7 1025,5 1021,3 1017,5 1164 1095 1092 1080 1049 1042 1024 1018 1009 1009
la24-rand 1201,7 1135,0 1102,7 1086,0 1062,0 1055,0 1042,5 1037,3 1029,8 1027,0 1179 1115 1055 1055 1035 1035 1018 1018 1018 1014
la25-tail 1225,2 1165,5 1138,5 1127,0 1089,7 1070,7 1053,3 1032,7 1031,8 1029,5 1193 1123 1122 1108 1073 1053 1033 1010 1010 1010
la25-rand 1247,5 1189,3 1160,2 1143,3 1093,5 1077,8 1060,5 1049,3 1042,5 1037,5 1196 1155 1148 1123 1088 1064 1045 1042 1032 1027
la27-tail 1589,3 1541,0 1500,8 1499,0 1445,0 1438,8 1434,5 1424,8 1421,5 1418,5 1475 1475 1475 1475 1425 1422 1415 1413 1413 1413
la27-rand 1622,3 1573,2 1524,8 1510,2 1485,7 1465,8 1448,0 1439,3 1435,5 1427,3 1598 1552 1498 1495 1468 1452 1426 1426 1426 1401
la29-tail 1524,7 1473,3 1437,3 1420,0 1369,3 1352,5 1335,2 1320,3 1311,5 1311,0 1499 1433 1418 1392 1340 1340 1317 1300 1292 1292
la29-rand 1566,8 1503,7 1450,3 1423,5 1386,8 1376,8 1348,3 1344,5 1336,0 1325,8 1525 1486 1419 1392 1369 1363 1335 1335 1325 1303
la30-tail 1637,0 1579,2 1541,2 1535,3 1493,8 1477,5 1460,5 1449,8 1447,8 1447,7 1609 1548 1528 1527 1476 1467 1437 1434 1434 1434
la30-rand 1638,2 1610,2 1564,3 1549,8 1509,8 1495,7 1480,3 1477,3 1468,8 1463,3 1604 1571 1549 1533 1495 1470 1466 1466 1452 1443
la36-tail 1552,2 1483,2 1437,7 1420,0 1372,5 1343,5 1338,2 1329,5 1318,5 1314,7 1498 1450 1413 1392 1353 1316 1307 1307 1295 1289
la36-rand 1583,2 1500,0 1451,0 1417,0 1384,5 1368,2 1356,5 1346,5 1337,2 1330,3 1536 1471 1406 1392 1362 1340 1340 1321 1314 1314
la37-tail 1687,8 1635,8 1608,7 1588,5 1547,3 1542,3 1526,2 1517,0 1506,0 1505,0 1673 1622 1592 1571 1520 1520 1498 1492 1492 1492
la37-rand 1683,0 1649,0 1599,5 1587,5 1564,3 1553,8 1534,8 1521,7 1520,2 1517,2 1647 1602 1590 1564 1554 1535 1514 1500 1500 1500
la38-tail 1499,8 1447,8 1420,2 1410,2 1359,8 1348,8 1334,2 1312,5 1307,3 1304,8 1468 1429 1406 1403 1328 1328 1328 1296 1296 1288
la38-rand 1505,3 1466,5 1416,5 1392,2 1369,3 1347,2 1332,7 1318,5 1314,2 1311,7 1465 1443 1400 1363 1345 1328 1307 1290 1290 1290
la39-tail 1546,5 1501,2 1457,0 1435,8 1402,0 1368,3 1356,3 1347,8 1343,7 1338,7 1512 1462 1439 1410 1390 1348 1337 1337 1337 1329
la39-rand 1588,8 1491,3 1463,8 1444,2 1400,0 1390,7 1366,3 1361,7 1351,5 1350,2 1554 1466 1430 1410 1389 1367 1336 1336 1336 1336
la40-tail 1498,7 1447,7 1419,3 1401,0 1370,2 1363,0 1345,7 1335,3 1329,2 1325,7 1439 1411 1401 1374 1345 1345 1337 1319 1311 1311
la40-rand 1522,8 1460,2 1438,3 1418,3 1387,3 1366,2 1358,2 1352,2 1349,0 1346,7 1488 1443 1416 1409 1374 1339 1339 1339 1339 1333
mt10-tail 1126,2 1081,2 1060,3 1030,5 1002,3 984,8 969,3 959,5 952,7 949,3 1098 1063 1042 1019 975 972 955 951 940 940
mt10-rand 1143,0 1080,8 1048,2 1031,5 998,3 981,3 966,2 959,8 958,6 956,8 1117 1062 1023 1019 987 964 958 955 955 955

Iteration nº Iteration nº
Average of 5 runs Best of 5 runs

 
 

Table 4 presents the computational results. Fourteen instances were chosen from Beasley [28]. These instances 



 
 

9 

represent some of the hardest to solve and they were also chosen for others researchers [7,11,13,14]. 
For each instance were made five runs considering the tail information on the initial population, and also were 
made five runs with an initial population generated randomly. In each run the algorithm performs 5000 iterations. 
Table 4 shows the average value and the best value of five runs. Each column shows the values in different 
iterations of the algorithm. In the computation experiments it was only used a value for the GAP. 
Globally in all experiments the use of tails’ information of the instance produces in average 1% better results. This 
advantage is more evident in the initial iterations, so for some instances it was obtained solutions about 3% better. 
In terms of best solution the use of tails' information is relevant on the initial iterations. In some instances the use of 
tails information produces a solution about 8% better than using a random initial population. 
 
5. Conclusions 
This paper compares two schemes to generate the initial solution in an evolutionary algorithm to solve the Job 
Shop Scheduling Problem. The conventional random generation is compared with a new method based on 
instance’s information. It is possible to establish different priorities to the operations related with the remaining 
processing time to complete the jobs. Using this type of priority was implemented a procedure to generate an initial 
population. The proposed algorithm uses a representation based on random keys. 
The experimental computation performed gives better results when the information of the instance is used, mainly 
in the first iterations. This is a possibility to increase the effectiveness of a method when it is not possible to spend 
more time to compute the solutions. This process is very simple and autonomous. Also it is possible to 
parameterize the use of the instance's information. 
The further work consists to apply this strategy to others problems. The first tentative will be the Project 
Scheduling Problem with Resource Constraints, once that is a generalization of Job Shop Scheduling Problem. 
Since the random keys representation has no Lemarkin property is our intent to apply the same scheme of initial 
generation in other types of representation for the Job Shop Scheduling Problem. 
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