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Abstract
In this work we investigate the compliance minimization problem of a plate subjected to the in-plane
and transverse loadings acting simultaneously. In this way we attempt to generalize the classical Free
Material Optimization considerations to the coupled membrane-bending loading case. In our approach
we utilize the spectral representation of a fourth-rank constitutive (stiffness) tensor in finding the optimal
orientation of its second-rank eigentensors. The case under study is based on three assumptions: the plate
is homogeneous with respect to its thickness, the design variables are not restricted by any isoperimetric
condition and the Kelvin moduli values are kept fixed on the middle plane of a structure. Optimization
task is thus reduced to the equilibrium problem of an effective hyperelastic plate with strictly convex
effective nonlinear potential expressed in terms of strains. Corresponding constitutive equations are ana-
lytically and explicitly derived which allows determining all components of the optimized stiffness tensor.
Keywords: free material optimization, plates, shells

1. Introduction
Elastic properties of the three-dimensional elasticity constitutive tensor are determined by six indepen-
dent moduli of stress dimension (Pa) and by fifteen nondimensional geometric independent parameters.
This characterization follows from the spectral decomposition of Hooke’s tensor, cf. [7], where the author
proposed to attribute six elastic moduli to the name of Kelvin. The meaning of moduli and geometric
parameters involved in the spectral representation is best seen, if one has an insight into the geometric
properties of the RVE cells, while considering the theory of the non-homogeneous media from the me-
chanics of composites point of view. The theory of spectral decomposition of Hooke’s tensors was also
developed in e.g. [6], [8], [9].
Elastic properties of two-dimensional problems are determined by three Kelvin moduli (λ1, λ2, λ3) and
three geometric parameters, see [2] and [3]. In the present paper this spectral representation will be
applied to describe stiffness distribution in thin elastic transversely homogeneous plate, whose model is
based on the assumption of so-called generalized plane state of stress. This allows to determine both
membrane and bending stiffnesses by one fourth-rank tensor A of Hooke’s symmetry.
Subject of the present paper is to construct the optimal layout of geometric parameters of tensor A for
the problem of simultaneous in-plane and transverse deformation of plates. The values of Kelvin moduli
are kept fixed, hence the aim of the optimization is to determine the directions of corresponding eigen-
tensors thus minimizing the compliance of the plate made from this class of materials, which means the
stiffening of a plate against given loading. The problem discussed here does not necessitate imposition of
any isoperimetric condition, which makes it more universal.
Optimization task considered in the sequel belongs to the free material optimization (FMO) or free mate-
rial design (FMD) class of problems researched intensively since the 1990’s, see e.g. [1], [4], [5]. However,
the approach proposed in the present paper makes formulating the FMO problem possible using different
tools, thus allowing for a deep insight into the mathematical structure of the stiffness moduli tensor. It
also paves the way for the new version of FMO, with non-standard isoperimetric conditions concerning
the Kelvin moduli.

2. Problem formulation
Consider a plate of continuously varying thickness h = h(x), x ∈ Ω, where Ω denotes the middle plane
of a plate and assume that the material is homogeneously distributed in a direction perpendicular to
Ω. Suppose that the deformation of thus defined structure is described by the theory of thin plates
therefore transverse deformations are neglected while membrane and bending strain fields εαβ = εαβ(u),
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καβ = καβ(w), are defined as

εαβ(u) =
1
2
(uα,β + uβ,α), καβ(w) = −w,αβ , (1)

where u(x) = (u1(x), u2(x)) and w(x) represent kinematically admissible in-plane and transverse dis-
placement fields respectively. Moreover, (·),α = ∂/∂xα, where the Cartesian system (x1, x2) parameterize
Ω. If complemented with axis x3 orthogonal to Ω the coordinate system (x1, x2, x3) is assumed coun-
terclockwise.
Let tensor C = (Cαβλµ) comprise all moduli of the generalized plane stress state and set

Aαβλµ = hCαβλµ, Dαβλµ =
h3

12
Cαβλµ. (2)

Stress resultants N = (Nαβ) and couple resultants M = (Mαβ) are linked with strains by linear equations

Nαβ = Aαβλµελµ, Mαβ = Dαβλµκλµ (3)

If the plate is subject to in-plane and transverse loadings of intensities p(x) = (p1(x), p2(x)) and q(x) re-
spectively then their virtual work on the test in-plane and transverse displacements v(x) = (v1(x), v2(x))
and v(x) is expressed as

f(v, v) =
∫

Ω

(pαvα + qv)dx. (4)

Second-order plane symmetric tensors and fourth-order tensors of Hooke’s symmetry belong to the spaces
denoted by E2

s and E4
s respectively. Certain geometrical analogy, see [8], allows treating objects belonging

to these spaces as vectors and second-order tensors in R3. Their representations are thus given by

a =




a11

a22√
2a12


 , a ∈ E2

s,

A =




A1111 A1122

√
2A1112

A1122 A2222

√
2A1222√

2A1112

√
2A1222 2A1212


 , A ∈ E4

s.

(5)

Obviously, components of thus defined representations depend on the choice of basis in Ω. For brevity of
further derivation define the following operations on objects from E2

s and E4
s

a · b =
3∑

i=1

ai bi, a ∈ E2
s, b ∈ E2

s,

A : B =
3∑

i=1

3∑
j=1

Aij Bij , A ∈ E4
s,B ∈ E4

s,

Ab =
3∑

j=1

Aij bj , A ∈ E4
s, b ∈ E2

s,

AB =
3∑

j=1

Aij Bjk, A ∈ E4
s,B ∈ E4

s.

(6)

The first and second equation in Eqs (6) denote scalar products in corresponding spaces. Respective
norms are thus defined as ‖a‖ = (a · a)

1
2 and ‖A‖ = (A : A)

1
2 .

Due to the transverse symmetry of a plate, the components of tensor A are constant in this direction
thus they are treated as fields referred to Ω. Spectral decomposition of A admits the following form

A = λ1 P (1) + λ2 P (2) + λ3 P (3) (7)

where λ1 > λ2 > λ3 stand for the Kelvin moduli, and

P (i) = ωi ⊗ ωi, i = 1, 2, 3 (8)

denote projectors on eigenspaces corresponding to λi. Tensors ωi stand for the eigenstates of A satisfying
the orthogonality conditions

ωi · ωj = δij . (9)
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Assuming that the values of moduli λ1 > λ2 > λ3 > 0 are fixed within Ω and the orientation of ω1,
ω2, ω3 is unknown, consider the following optimum design problem: At each point x ∈ Ω find such
orientation of tensors ωi that maximizes the elastic energy density thus minimizing the total compliance
of a plate through

C0 = −2 min
(v, v)∈V

, Jλ(v, v) (10)

where (v, v) ∈ V denotes the kinematical admissibility of the corresponding test displacement fields and

Jλ(v, v) =
∫

Ω

Wλ(x) (ε(v), κκκ(v)) dx− f(v, v) (11)

with

Wλ(x)(ε, κκκ) =
1
2

max
A∈Tλ(x)

{
ε · (A ε) +

h2

12
κκκ · (Aκκκ)

}
(12)

where Tλ(Ω) stands for the set of the constitutive tensor fields determined at each point x ∈ Ω by Kelvin
moduli λ1(x), λ2(x), λ3(x) and arbitrary eigenstates ω1(x), ω2(x), ω3(x).
Condition of stationarity imposed on the functional in Eq. (11) leads to the equilibrium problem of an
effective plate with hyperelastic constitutive properties. Stress and couple resultants are thus calculated
as

N =
∂Wλ(x)(ε, κκκ)

∂ε
, M =

∂Wλ(x)(ε, κκκ)
∂κκκ

. (13)

3. Outline of the optimal energy functional derivation
To make the units of corresponding tensors uniform set

κ =
h√
12
κκκ, K =

√
12
h

M , (14)

which allows for rewriting Eq. (12) in the equivalent form

Wλ(ε, κκκ) = Wλ

(
ε,

√
12
h

κ

)
= Uλ(ε, κ) (15)

where
Uλ(ε, κ) =

1
2

max
A∈Tλ

{ε · (Aε) + κ · (Aκ)} (16)

with the argument x being ommited since further discussion is pointwise in Ω.
Formula in Eq. (16) is equivalent to

2U(ε, κ) = max

{
3∑

k=1

λk

[
(ωk · ε)2 + (ωk · κ)2

]
∣∣∣∣∣ ωi ∈ E2

s, ωi · ωj = δij

}
(17)

and rearranging (17) gives

2Uλ(ε, κ) = λ3

(‖ε‖2 + ‖κ‖2) + 2U1(ε, κ) (18)

with

2U1(ε, κ) = max

{
2∑

α=1

µα

[
(ωα · ε)2 + (ωα · κ)2

]
∣∣∣∣∣ ωα ∈ E2

s, ωα · ωβ = δαβ

}
(19)

where
µ1 = λ1 − λ3, µ2 = λ2 − λ3. (20)

By introducing

ξ =
‖κ‖2
‖ε‖2 , d =

µ2

µ1
, (21)

and
ε̂ =

ε

‖ε‖ , κ̂ =
κ

‖κ‖ (22)
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followed by

κ̃ =

{
κ̂ if ε̂ · κ̂ > 0

−κ̂ if ε̂ · κ̂ < 0
(23)

one obtains
2U1(ε, κ) = µ1‖ε‖2 max

{
U(ε̂, κ̃)

∣∣∣ ωi ∈ E2
s, ωi · ωj = δij

}
(24)

where
U(ε̂, κ̃) = (ω1 · ε̂)2 + d(ω2 · ε̂)2 + ξ (ω1 · κ̃)2 + d ξ (ω2 · κ̃)2. (25)

Calculations leading to the maximum value of the potential in Eq. (24) are ommited here and will be
published elsewhere in full detail. Roughly speaking, the maximum of U(ε̂, κ̃) is reached if the plane
Π12, spanned by vectors ω1 and ω2 is inclined at the angle β = 0 or β = π to the plane Πεκ spanned
by vectors ε and κ. Further analysis is thus performed with an assumption of vectors ε, κ̃, ω1 and ω2

being co-planar.
Setting α = ^(ε, κ̃), y0 = 2α and, by abuse of notation, x = ^(ε,ω1), y = 2x, see Fig. 1, one may
rewrite Eq. (25) as

U(ε̂, κ̃) =
1
2

[(1 + ξ)(1 + d) + (1− d)f(y)] (26)

where
f(y) = cos y + ξ cos(y − y0). (27)

Figure 1: Juxtaposition of vectors ω1, ω2, ε̂, κ̃.

The maximum problem in Eq. (24) is thus reduced to the calculation of maxy f(y) and it can be shown
explicitly that the solution takes the form

max
y

f(y) =
√

1 + 2ξ cos y0 + ξ2 (28)

with the maximizer expressed by

tan(2x0) =
ξ sin(2α)

1 + ξ cos(2α)
. (29)

Final expressions for energy potentials of an optimal plate are given by

2U1(ε, κ) =
1
2
(µ1 + µ2)(||ε||2 + ||κ||2) +

1
2
(µ1 − µ2)[(||ε||2 − ||κ||2)2 + 4(ε · κ)2]

1
2 (30)

and
Uλ(ε, κ) =

1
4
(λ1 + λ2)(||ε||2 + ||κ||2) +

1
4
(λ1 − λ2)[(||ε||2 − ||κ||2)2 + 4(ε · κ)2]

1
2 (31)

thus determining Wλ(ε, κκκ) by Eq. (15) or explicitly

Wλ(ε, κκκ) =
1
4
(λ1 + λ2)

(
||ε||2 +

h2

12
||κκκ||2

)
+

1
4
(λ1 − λ2)

[(
||ε||2 − h2

12
||κκκ||2

)2

+
h2

3
(ε · κ)2

] 1
2

. (32)
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Properties of thus obtained potential Wλ(ε, κκκ), including its strict convexity, will be analyzed in separate
publication.

4. Constitutive equations of optimal plate
By making use of Eqs (15) and (31) rewrite Eq. (13) in a form

N =
1
2
(λ1 + λ2) [(1 + ν φ) ε + ν ψ κ] ,

K =
1
2
(λ1 + λ2) [ν ψ ε + (1− ν φ)κ] ,

(33)

where
ν =

λ1 − λ2

λ1 + λ2
, (34)

and obviously 0 < ν < 1 as λ1 > λ2 > 0.
Next, assume that vectors ε, κ are not co-linear and set a basis as in Eq. (A.1), see Appendix, and
rephrase Eqs (33) thus obtaining

N = (Ai
j ei ⊗ ej) ε = (Ai

j ei ⊗ ej) e1 = Ai
1 ei

K = (Ai
j ei ⊗ ej)κ = (Ai

j ei ⊗ ej) e2 = Ai
2 ei.

(35)

The comparison of Eqs (33) and (35) leads to the mixed representation of tensor A

(Ai
j) =




1
2
(λ1 + λ2)(1 + ν φ)

1
2
(λ1 + λ2)ν ψ 0

1
2
(λ1 + λ2)ν ψ

1
2
(λ1 + λ2)(1− ν φ) 0

0 0 λ3


 (36)

which means that contravariant representations of N and K in Eqs (33) are given by vectors


N1

N2

N3


 =

1
2
(λ1 + λ2)




1 + ν φ
ν ψ
0


 ,



K1

K2

K3


 =

1
2
(λ1 + λ2)




ν ψ
1− ν φ

0


 . (37)

Eigentensors P (i), i.e. proper states of the optimal constitutive tensor A, see Eq. (7), can be calculated
as, see [7],

P (1) =
1

(λ1 − λ2)(λ1 − λ3)
(A− λ2E)(A− λ3E),

P (2) =
1

(λ2 − λ1)(λ2 − λ3)
(A− λ1E)(A− λ3E),

P (3) =
1

(λ3 − λ1)(λ3 − λ2)
(A− λ1E)(A− λ2E)

(38)

or explicitly in the basis ej ⊗ ek

(P(1)
j
k) =




1
2
(1 + φ)

1
2
ψ 0

1
2
ψ

1
2
(1− φ) 0

0 0 0



, (39)

(P(2)
j
k) =




1
2
(1− φ) −1

2
ψ 0

−1
2
ψ

1
2
(1 + φ) 0

0 0 0



, (40)
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and

(P(3)
j
k) =




0 0 0

0 0 0

0 0 1



. (41)

It is a simple matter to check that ‖P (i)‖ = 1, i = 1, 2, 3.
Applying Eqs (39), (40) and (A.1), the following formulae

ψ‖ε‖2 + (1− φ)(ε · κ) = ψ‖κ‖2 + (1 + φ)(ε · κ) = (ε · κ) +
1
2
ψ(‖ε‖2 + ‖κ‖2),

−ψ‖ε‖2 + (1 + φ)(ε · κ) = −ψ‖κ‖2 + (1− φ)(ε · κ) = (ε · κ)− 1
2
ψ(‖ε‖2 + ‖κ‖2),

(42)

and the expression

cos2 x0 =
P (1) : (ε⊗ ε)

‖ε‖2 (43)

allows finding the counterpart of Eq. (29). In this way one obtains

cos2 x0 =
1
2
(1 + φ) +

1
2
ψ

(ε · κ)
‖ε‖2 . (44)

Combining the following identity

tan2(2x0) =
4(1− cos2 x0) cos2 x0

2 cos2 x0 − 1
(45)

with Eq. (44) gives Eq. (29). Similarly, one can calculate

cos2(x0 − α) =
P (1) : (κ⊗ κ)

‖κ‖2 (46)

or explicitly

cos2(x0 − α) =
1
2
(1− φ) +

1
2
ψ

(ε · κ)
‖κ‖2 , (47)

hence the requirement imposed on ^(ε̂, κ̃) being acute can be dropped in the analysis involving cos2 x0

and cos2(x0 − α), as the expressions in Eqs (46) and (47) are not sensitive to the sign of κ.

5. Incremental form of the constitutive equations
Many numerical applications require defining the constitutive equations in an incremental form

∆N =
∂N

∂ε
∆ε +

∂N

∂κ
∆κ,

∆K =
∂K

∂ε
∆ε +

∂K

∂κ
∆κ.

(48)

Easy computations involving formulae in Eqs (33) show that derivatives in Eqs (48) can be expressed in
a form

∂N

∂ε
=

1
2
(λ1 + λ2)

[
ν
∂φ

∂ε
⊗ ε + ν

∂ψ

∂ε
⊗ κ + (1 + ν φ) I

]
,

∂N

∂κ
=

1
2
(λ1 + λ2)

[
ν
∂φ

∂κ
⊗ ε + ν

∂ψ

∂κ
⊗ κ + ν ψ I

]
,

∂K

∂ε
=

1
2
(λ1 + λ2)

[
ν
∂ψ

∂ε
⊗ ε− ν

∂φ

∂ε
⊗ κ + ν ψ I

]
,

∂K

∂κ
=

1
2
(λ1 + λ2)

[
ν
∂ψ

∂κ
⊗ ε− ν

∂φ

∂κ
⊗ κ + (1− ν φ) I

]
,

(49)
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where I stands for the unit tensor, see Eq. (A.7), and

∂φ

∂ε
= 2

ψ

G
(ψ ε− φκ) ,

∂φ

∂κ
= −2

ψ

G
(φ ε + ψ κ) ,

∂ψ

∂ε
= −2

φ

G
(ψ ε− φκ) ,

∂ψ

∂κ
= 2

φ

G
(φ ε + ψ κ) .

(50)

In the calculations one also needs to take into account the representation of the dyadic products ε ⊗ ε,
ε ⊗ κ, κ ⊗ κ and tensor I in a basis chosen for computations. For this purpose assume that {i1, i2}
constitute a fixed orthonormal basis in R2 and note that {i1 ⊗ i1 , i2 ⊗ i2, (1/

√
2)(i1 ⊗ i2 + i2 ⊗ i1)

}
form an orthonormal basis in R3 which is convenient for describing two-dimensional symmetric tensors
as three-dimensional vectors, see Eqs (5), thus obtaining

ε⊗ ε =




(ε11)2 ε11ε22
√

2ε11ε12
ε22ε11 (ε22)2

√
2ε22ε12√

2ε12ε11
√

2ε12ε22 2 (ε12)2


 , (51)

ε⊗ κ =




ε11κ11 ε11κ22

√
2ε11κ12

ε22κ11 ε22κ22

√
2ε22κ12√

2ε12κ11

√
2ε12κ22 2 ε12κ12


 , (52)

κ⊗ κ =




(κ11)2 κ11κ22

√
2κ11κ12

κ22κ11 (κ22)2
√

2κ22κ12√
2κ12κ11

√
2κ12κ22 2 (κ12)2


 , (53)

with (ε⊗ κ)αβ = (κ⊗ ε)βα and

ω3 ⊗ ω3 =




(q1)2 q1 q2 q1 q3
q2 q1 (q2)2 q2 q3
q3 q1 q3 q2 (q3)2


 , (54)

where
q1 =

ε2κ3 − ε3κ2√
(ε1κ2 − ε2κ1)2 + (ε2κ3 − ε3κ2)2 + (ε1κ3 − ε3κ1)2

,

q2 = − ε1κ3 − ε3κ1√
(ε1κ2 − ε2κ1)2 + (ε2κ3 − ε3κ2)2 + (ε1κ3 − ε3κ1)2

,

q3 =
ε1κ2 − ε2κ1√

(ε1κ2 − ε2κ1)2 + (ε2κ3 − ε3κ2)2 + (ε1κ3 − ε3κ1)2
,

(55)

and
ε1 = ε11, κ1 = κ11,
ε2 = ε22, κ2 = κ22,

ε3 =
√

2ε12, κ3 =
√

2κ12.
(56)
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Appendix
Introduce a basis

e1 = ε

e2 = κ

e3 =
ε× κ

‖ε× κ‖ ,
(A.1)

such that

e1 · e3 = 0,
e2 · e3 = 0,
‖e3‖ = 1.

(A.2)

Next, calculate the covariant components Eij = Eji of a metric tensor E = Eije
i ⊗ ej

E11 = ‖ε‖2, E13 = E23 = 0,
E12 = ε · κ, E33 = 1,
E22 = ‖κ‖2,

(A.3)

and recall that mixed components of E are given by formula Ei
j = Ej

i = δi
j , where

δi
j = ei · ej = Eikek · ej = EikE

kj . (A.4)

Making use of Eqs (A.3) and (A.4) allows for the calculation of contravariant components Eij = Eji

E11 =
‖κ‖2

‖ε‖2 ‖κ‖2 − (ε · κ)2
, E13 = E23 = 0,

E12 = − ε · κ
‖ε‖2 ‖κ‖2 − (ε · κ)2

, E33 = 1,

E22 =
‖ε‖2

‖ε‖2 ‖κ‖2 − (ε · κ)2
, (A.5)

and co-basis vectors ei = Eij ej

e1 = E11 e1 + E12 e2 =
‖κ‖2

‖ε‖2 ‖κ‖2 − (ε · κ)2
ε− ε · κ

‖ε‖2 ‖κ‖2 − (ε · κ)2
κ,

e2 = E21 e1 + E22 e2 = − ε · κ
‖ε‖2 ‖κ‖2 − (ε · κ)2

ε +
‖ε‖2

‖ε‖2 ‖κ‖2 − (ε · κ)2
κ,

e3 = E33 e3 =
ε× κ

‖ε× κ‖ . (A.6)

In this notation, the unit Hooke tensor I is expressed by

I = ei ⊗ ei (A.7)

i.e. coincides with the metric tensor E in mixed representation.
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